Alright, let's do all of these (though this is a bit long).
1.
The constant is 1.8. All other values are coefficients to variables, which as the name implies will change.
2.
1 hour is 60 minutes, 1 minute is 60 seconds.
So, 4.2 *60 *60 = 15120 seconds.
3.
<span>−5x−4(x−6)=−3-5x-4(x-6)=-3
Let's move all x to one side, and all other numbers to another.
-5x-4(x-6)=-3-5x-4(x-6)=-3
x can be any value you want, if you actually solve this you'll only end up with -3 = -3, which is correct, of course.
Let me show you:
</span><span>−5x−4(x−6)=−3-5x-4(x-6)=-3
+5x +4(x-6) +5x +4(x-6)
-3 = -3
The value of x is irrelevant, then. X can be any real number.
4.
I'm going to assume it was an error in printing with this? If not please correct me.
m=a+2b(or b2)
subtract 2b from each
a=m-2b
(This question seems kind of odd. We should probably address this in the comments.)
5.
</span><span>5(x−2)<−3x+6
Move all x to one side, numbers to other.
5x-10<-3x+6
+3x +3x
+10 +10
8x<16
/8
<span>x < 2
</span>6.
y-3=3(x-5)
alright, to find zeros set one variable to zero and solve
x first
-3=3x-15
+15 +15
3x=12
/3
x=4
x-int is (4,0)
now y
</span>y-3=3(0-5)
y-3=-15
+3 +3
y=-12
so y-int is (0,-12)
i've got to sleep now so i'll do the rest tomorrow. Sorry for the incomplete answer.
2.25 x 1000 = 2250.
That's how much yds of ribbons he needs.
Answer:
Only option C shows a function
Step-by-step explanation:
The vertical line test is a visual way to determine if a curve is a graph of a function or not. A function can only have one output, y, for each unique input, x. This means that a vertical line made in the domain of the function can crosses the curve of the function only once. If it crosses the curve of the function more than once, then the curve is not a function.
In option A, a vertical line would cross two values, so it is not a function.
The curve of option B is a vertical line itself, so a vertical line would intersect an infinite amount of points; then it is not a function.
Option C is a function because a vertical line would only intersect the function's curve (which is a line) once.