Answer:
46
Step-by-step explanation:
We are given that a class's test scores are normally distributed with an average score of 60.
We know that the curve of a normal distribution is symmetric about its mean.
60-14=46
60+14=74
Hence, the point 46 lies to the left of the mean and 74 lies to the right of the mean, and the two points have the same function value.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (6, 2)
Point (9, 8)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction] Subtract:

- [Fraction] Divide:

X-2y=1
subtract x
-2y = 1-x
divide by -2
y = x-1
2
Here ya go. Hope this helps. Have a great day