34/4=8.5
8.5x5=42.5
The answer is $42.50
Answer:
see explanation
Step-by-step explanation:
Given
-
[ -
c + 6c + 1 ] - 3c
Distribute the square bracket by - 
=
c - 3c -
- 3c ← combine like terms
=
c - 6c - 
=
c -
c - 
= -
c - 
Let
be the total amount of money paid by any given set of passengers. If there are
passengers in a car, then the driver must pay a toll of
.
Then
has first moment (equal to the mean)
![E[Y]=E[0.5X+3]=0.5E[X]+3E[1]=0.5\mu_X+3=\boxed{4.35}](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5B0.5X%2B3%5D%3D0.5E%5BX%5D%2B3E%5B1%5D%3D0.5%5Cmu_X%2B3%3D%5Cboxed%7B4.35%7D)
and second moment
![E[Y^2]=E[0.25X^2+3X+9]=0.25E[X^2]+3E[X]+9E[1]=0.25E[X^2]+3\mu_X+9](https://tex.z-dn.net/?f=E%5BY%5E2%5D%3DE%5B0.25X%5E2%2B3X%2B9%5D%3D0.25E%5BX%5E2%5D%2B3E%5BX%5D%2B9E%5B1%5D%3D0.25E%5BX%5E2%5D%2B3%5Cmu_X%2B9)
Recall that the variance is the difference between the first two moments:
![\mathrm{Var}[X]=E[X^2]-E[X]^2\implies E[X^2]={\sigma^2}_X+{\mu_X}^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2%5Cimplies%20E%5BX%5E2%5D%3D%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2)
![\implies E[Y^2]=0.25({\sigma^2}_X+{\mu_X}^2)+3\mu_X+9\approx19.22](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5E2%5D%3D0.25%28%7B%5Csigma%5E2%7D_X%2B%7B%5Cmu_X%7D%5E2%29%2B3%5Cmu_X%2B9%5Capprox19.22)
![\implies\mathrm{Var}[Y]=E[Y^2]-E[Y]^2=\boxed{0.3}](https://tex.z-dn.net/?f=%5Cimplies%5Cmathrm%7BVar%7D%5BY%5D%3DE%5BY%5E2%5D-E%5BY%5D%5E2%3D%5Cboxed%7B0.3%7D)
Answer:
Step-by-step explanation:
N is between points M and O
MN = x
MO = 3x - 6
NO = x + 1
The way it reads MN + NO = MO
x + x + 1 = 3x - 6
2x + 1 = 3x - 6
2x - 2x +1 = 3x -2x - 6
1 = x - 6
1 + 6 = x
x = 7
MO = 3x - 6
MO = 3*7 - 6
MO = 21 - 6
MO = 15