Answer/Step-by-step explanation:
1. The figure is composed of a triangle and a rectangle.
Area of the triangle = ½*base*height
base = 4 ft
height = 12 - 8 = 4ft
Area of triangle = ½*4*4 = 8 ft²
Area of rectangle = length * width
Length = 8 ft
Width = 4 ft
Area of rectangle = 8*4 = 32 ft²
✔️Area of the figure = 8 + 32 = 40 ft²
2. The figure is composed of a semicircle and a triangle
Area of the semicircle = ½(πr²)
radius (r) = 3 cm
π = 3
Area = ½(3*3²) = 13.5 cm²
Area of triangle = ½*base*height
base = 3*2 = 6 cm
height = 6 cm
Area = ½*6*6 = 6 cm²
✔️Area of the figure = 13.5 + 6 = 19.5 cm²
(3782 - 192) : 2 = 1795 (first number)
1795 + 192 = 1987 ( second number)
--------------------------
1987 - 1795 = 192
1987 + 1795 = 3782
Answer:
$180
Step-by-step explanation:
100%=x
35%=$63
63 x 100=6300/35=$180
Answer:
$167.03
Step-by-step explanation:
ok
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
<u>Step-by-step explanation:</u>
Here we have , ∠PRS and ∠VUW are supplementary . We need to complete the proof of TV || QS , with matching the reasons with statements .Let's do this :
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
Above mentioned are , are the statements matched with expressions on right hand side (RHS) .
- The Corresponding Angles Postulate states that, when two parallel lines are cut by a transversal , the resulting corresponding angles are congruent .
- The converse states: If corresponding angles are congruent, then the lines cut by the transversal are parallel.