Answer:
20 inches
Step-by-step explanation:
Since the cape is trapezoid shaped and has an area of 600 in², the area of a trapezoid is given by
A =1/2(a + b)h where a = length along the top of the cape = 24 in, b = length along the bottom of the cape = 36 in and h = height of the cape
So, h = 2A/(a + b)
= 2 × 600 in²/(24 in + 36 in)
= 1200 in²/60 in
= 20 in
So, the height of the cape is 20 inches
I believe the answer is 280 because if you add all of the representatives together that it was it equals.
Answer:


Step-by-step explanation:
First we define two generic vectors in our
space:


By definition we know that Euclidean norm on an 2-dimensional Euclidean space
is:

Also we know that the inner product in
space is defined as:

So as first condition we have that both two vectors have Euclidian Norm 1, that is:

and

As second condition we have that:


Which is the same:

Replacing the second condition on the first condition we have:

Since
we have two posible solutions,
or
. If we choose
, we can choose next the other solution for
.
Remembering,

The two vectors we are looking for are:

Answer:
f= m - 5.5
Step-by-step explanation:
According to the table m is 15.25, so you would subtract 5.5 and you get 9.75 = f