If we are supposed to give you like a life situation that matches the equation then I have one:
You have 42 watermelons and you need to divide them into equal groups. Let n equal the number of watermelons in each group. There are 6 groups in total. How many watermelons are in each group? (solve for n).
If this is not what you were looking for then my apologies.
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.
Answer:
6x + 12y = 816
Step-by-step explanation:
6 dollars per regular admission
12 dollars per both dance and volleyball
in total 816 dollars
Step-by-step explanation:
Add 4 to both sides: 5e^3x = 35, or