This is a proportion question. We can express this as an equation where the answer is
x:
![\frac{1}{250}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B250%7D%20)
=
![\frac{x}{378}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7B378%7D%20)
From there, you can just cross-multiply and divide to get:
![\frac{1 * 378}{250}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%20%2A%20378%7D%7B250%7D%20)
A tenth of 250 is 25, so this is roughly
![\frac{375}{250}](https://tex.z-dn.net/?f=%20%5Cfrac%7B375%7D%7B250%7D%20)
or
![\frac{17}{10}](https://tex.z-dn.net/?f=%20%5Cfrac%7B17%7D%7B10%7D%20)
, so it'll be approximately 1.7 inches on the map.
Answer:
For an nth term U(n) = a + (n - 1)d
n = number of terms
a = first term
d = common difference
a = 5
d = 2 - 5 = - 3
U(n) = 5 + (n -1)-3
= 5 - 3n + 3
= 8 - 3n
The formula for the sequence is 8 - 3n
Hope this helps
Answer: The answer is in the attachment below!
the first one is -6, 8 second is 0,8!
Answer:
Speed per second= 7.5 feet per second
Step-by-step explanation:
Giving the following information:
We have a distance (225 feet), and a time (30 seconds). Also, we know that the speed was constant.
<u>All we have to do is divide the distance by the time and determine the speed per second:</u>
Speed per second= distance / time
Speed per second= 225 / 30
Speed per second= 7.5 feet per second
Volume of the first dwarf planet (r₁ = 832 mi):
![V_1=\dfrac{4}{3}\cdot\pi\cdot r_1^3=\dfrac{4}{3}\cdot\pi\cdot 832^3=\dfrac{2303721472}{3}\pi\approx7.679\cdot10^8\pi\,\text{mi}^3](https://tex.z-dn.net/?f=V_1%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot%5Cpi%5Ccdot%20r_1%5E3%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot%5Cpi%5Ccdot%20832%5E3%3D%5Cdfrac%7B2303721472%7D%7B3%7D%5Cpi%5Capprox7.679%5Ccdot10%5E8%5Cpi%5C%2C%5Ctext%7Bmi%7D%5E3)
Volume of the second dwarf planet (r₂ = 829 mi):
![V_2=\dfrac{4}{3}\cdot\pi\cdot r_2^3=\dfrac{4}{3}\cdot\pi\cdot 829^3=\dfrac{2278891156}{3}\pi\approx7.5963\cdot10^8\pi\,\text{mi}^3](https://tex.z-dn.net/?f=V_2%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot%5Cpi%5Ccdot%20r_2%5E3%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot%5Cpi%5Ccdot%20829%5E3%3D%5Cdfrac%7B2278891156%7D%7B3%7D%5Cpi%5Capprox7.5963%5Ccdot10%5E8%5Cpi%5C%2C%5Ctext%7Bmi%7D%5E3)
So difference between the volumes is:
![V_1-V_2\approx7.679\cdot10^8\pi-7.5963\cdot10^8\pi=0.0827\cdot10^8\pi=\boxed{8270000\pi\,\text{mi}^3}](https://tex.z-dn.net/?f=V_1-V_2%5Capprox7.679%5Ccdot10%5E8%5Cpi-7.5963%5Ccdot10%5E8%5Cpi%3D0.0827%5Ccdot10%5E8%5Cpi%3D%5Cboxed%7B8270000%5Cpi%5C%2C%5Ctext%7Bmi%7D%5E3%7D)
or if we want exact value (we use (a³-b³) = (a-b)(a²+ab+b²) ):