Using the hypergeometric distribution, it is found that there is a 0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
In this problem, the bulbs are chosen without replacement, hence the <em>hypergeometric distribution</em> is used to solve this question.
<h3>What is the hypergeometric distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 12 bulbs, hence N = 12.
- 3 are defective, hence k = 3.
The third defective bulb is the fifth bulb if:
- Two of the first 4 bulbs are defective, which is P(X = 2) when n = 4.
- The fifth is defective, with probability of 1/8, as of the eight remaining bulbs, one will be defective.
Hence:


0.2182 x 1/8 = 0.0273.
0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
More can be learned about the hypergeometric distribution at brainly.com/question/24826394
Answer:
90000
Step-by-step explanation:
I put 4000 times 6 years then added that to 66000 then got 90000.
A benefit is the technology can be more aaurate and you can use a compass and a straightedge wrong and get lost. Also the compass can break
Answer:
28
Step-by-step explanation:
What you do is add up 42 and 76, then you subtract that from 180, because all triangles add up to 180. the subtracted amount is what z equals. Then since its a straight line you know it adds up to 180. You add z (62) and 90 because its a right angle. then you subtract 180 by 152 to get 28.
brianliest pls
Answer:
The answer is -5/24.
Step-by-step explanation: