Answer:
a) 615
b) 715
c) 344
Step-by-step explanation:
According to the Question,
- Given that, A study conducted by the Center for Population Economics at the University of Chicago studied the birth weights of 732 babies born in New York. The mean weight was 3311 grams with a standard deviation of 860 grams
- Since the distribution is approximately bell-shaped, we can use the normal distribution and calculate the Z scores for each scenario.
Z = (x - mean)/standard deviation
Now,
For x = 4171, Z = (4171 - 3311)/860 = 1
- P(Z < 1) using Z table for areas for the standard normal distribution, you will get 0.8413.
Next, multiply that by the sample size of 732.
- Therefore 732(0.8413) = 615.8316, so approximately 615 will weigh less than 4171
- For part b, use the same method except x is now 1591.
Z = (1581 - 3311)/860 = -2
- P(Z > -2) , using the Z table is 1 - 0.0228 = 0.9772 . Now 732(0.9772) = 715.3104, so approximately 715 will weigh more than 1591.
- For part c, we now need to get two Z scores, one for 3311 and another for 5031.
Z1 = (3311 - 3311)/860 = 0
Z2 = (5031 - 3311)/860= 2
P(0 ≤ Z ≤ 2) = 0.9772 - 0.5000 = 0.4772
approximately 47% fall between 0 and 1 standard deviation, so take 0.47 times 732 ⇒ 732×0.47 = 344.
26.60 if not
so sorry im also very small brain like u
The answer to this question would be: <span>-$1,700
In this question, we can separate the account into positive/debit and negative/credit value. The positive/debit value should be:
Joaquin has $1,300 in the bank
He has $4,000 worth of investment
Total positive value = $1300 + $4000= $5300
The negative value should be
</span><span>$7,000 worth of credit card debt
</span>Total positive value =$7000
<span>
Then the net worth should be: $5300 - $7000= -$1700</span>
Well, it depends on the window.