Answer:

![\large\boxed{2.\ ab^{-3x}=a\left(\dfrac{1}{b}\right)^{3x}=a\left[\left(\dfrac{1}{b}\right)^3\right]^x}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B2.%5C%20ab%5E%7B-3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%3Da%5Cleft%5B%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E3%5Cright%5D%5Ex%7D)
Step-by-step explanation:
![Use:\ a^{-n}=\left(\dfrac{1}{a}\right)^n\\------------\\\\(4)^{-3x^2}=\left[(4)^{-1}\right]^{3x^2}=\left(\dfrac{1}{4}\right)^{3x^2}](https://tex.z-dn.net/?f=Use%3A%5C%20a%5E%7B-n%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7Ba%7D%5Cright%29%5En%5C%5C------------%5C%5C%5C%5C%284%29%5E%7B-3x%5E2%7D%3D%5Cleft%5B%284%29%5E%7B-1%7D%5Cright%5D%5E%7B3x%5E2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B4%7D%5Cright%29%5E%7B3x%5E2%7D)
![Use:\ a^{-n}=\left(\dfrac{1}{a}\right)^n\ and\ (a^n)^m=a^{nm}\\--------------------\\\\ab^{-3x}=a\cdot b^{-3x}=a\left[(b)^{-1}\right]^{3x}=a\left(\dfrac{1}{b}\right)^{3x}\\\\ab^{-3x}=a\left(\dfrac{1}{b}\right)^{3x}=a\left[\left(\dfrac{1}{b}\right)^3\right]^x](https://tex.z-dn.net/?f=Use%3A%5C%20a%5E%7B-n%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7Ba%7D%5Cright%29%5En%5C%20and%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C--------------------%5C%5C%5C%5Cab%5E%7B-3x%7D%3Da%5Ccdot%20b%5E%7B-3x%7D%3Da%5Cleft%5B%28b%29%5E%7B-1%7D%5Cright%5D%5E%7B3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%5C%5C%5C%5Cab%5E%7B-3x%7D%3Da%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E%7B3x%7D%3Da%5Cleft%5B%5Cleft%28%5Cdfrac%7B1%7D%7Bb%7D%5Cright%29%5E3%5Cright%5D%5Ex)
65 x .12 = 7.865 - 7.8 = 57.2
Congruent= the same shape and size.
area of the rectangle before it is divided=8*(area congruent rectangle)
area of the rectangle before it is dividide=8*(5 cm²)=40 cm²
Area of the rectangle before it is dividide=40 cm²
Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
The value of x is 
Step-by-step explanation:
From the question we are told that
The length of the vertical length is 
The length of the base leg is L = 330 + d units
The length of the bisecting line segment is h
The base angle is 
The angle between d and line segment is 
For the first angle

=> 
For the whole big triangle

=> 
So equating the both d

Substitute values




Answer:
C
Step-by-step explanation:
HOPE THAT HELPSBDNQBDB