Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.
The mass of carbon dioxide that would be produced will be 22 kg
<h3>Combustion of carbon</h3>
The combustion of carbon in air can be represented by the equation:
C + O2 ---> CO2
The mole ratio of C to O2 to CO2 is 1:1:1.
Mole of 6kg of carbon = mass/molar mass
= 6000/12
= 500 moles
Equivalent mole of CO2 produced = 500 moles
Mass of 500 moles CO2 = mole x molar mass
= 500 x 44.01
= 22,005 g or 22 kg approximately
More on combustion reactions can be found here: brainly.com/question/13649083
Bohr's model is different from Rutherford's model by Bohr's model has 150 words , fundamental principles. also Rutherford's model does not have 150 words and fundamental principles. <span />
HCL(g) it consists of covalently molecules which are bonded and they do not ionize.
Non-polar solvent molecules do not attract molecules of HCL which cause them to be ionized.