1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
11

How do you graph y-2x=0 and y=6x - 10

Mathematics
1 answer:
olga2289 [7]3 years ago
6 0
The first step before graphing these is to ensure they are both in y=mx+b (slope-intercept) format.
Only the first one (y-2x=0) is not.
To convert this to slope-intercept form, just add 2x to both sides so y is isolated!
This leaves us with y=2x+0, which is in slope-intercept form.
When graphing these, you must identify the slope and the y-intercept.
In y=mx+b form, the m is slope and b is y-intercept.
In y=2x+0, the slope is 2 and the y-intercept is 0.
This means there is a slope of positive 2 and the y-intercept is (0, 0).
The y-intercept is the y-value where ever x=0.
In y=6x-10, the slope is 6 and the y-intercept is -10.
This means there is a slope of positive 6 and the y-intercept is (0, -10).

Hope this helps! :)
You might be interested in
Work out the size of angel x. <br><br>​
aniked [119]

Answer:

<h2>x=52</h2>

Basic fact:

<em>angles in a point add up to 360</em>

Step-by-step explanation:

20+165+33+90(that is the right angle)+x=360

20+165+33+90=308

308+x=360

-308

x=52

4 0
3 years ago
Read 2 more answers
If a fair coin is tossed, the probability that it will land heads up is ½. Olivia tosses a coin 4 times, and it lands on heads 4
disa [49]

Answer:

C

Step-by-step explanation:

The tosses before that were all by chance, the probability is still the same. Nothing changes.

6 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is X<br><br> 1+X/2=3x+4 over 9
Fynjy0 [20]
X= 2 over 9 or in decimal form 0.2222....
8 0
3 years ago
The volume of a cylinder closed at one end is 1056cm³. If it's height is 21cm Find it's (I) tatal surface area​
Elodia [21]

Answer:

is this answer correct?

let me know in comment section below!

Step-by-step explanation:

hope you liked it!

3 0
2 years ago
Other questions:
  • How to solve x/-3-2=5.5
    5·1 answer
  • -1/2 +2=-x+7 how do you figure this out​
    11·1 answer
  • Simplify x/0.7 = 27<br> a. 17,9<br> b. -17.9<br> c. 18.9<br> d. -18.9
    13·2 answers
  • PLEASE HELP!!! ASAP!!! Thank youuuu
    7·1 answer
  • Pls help extra points.
    5·1 answer
  • Jessle served 11 pints of orange Juice at her party. How many quarts of orange juice did she serve?​
    14·1 answer
  • Solve for x please. First correct answer I’ll mark as brainliest
    9·1 answer
  • Simplefly the problem 1/2x/45&gt;61
    7·1 answer
  • Ackrabbits are capable of reaching speeds up to 40 miles per hour. How fast is this in feet per second? (Round to the nearest wh
    11·1 answer
  • 2. I am thinking of a number. It is multiplied by 9. The product is 27. What is my number? (1 point)
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!