Answer:
mustard
Step-by-step explanation:
mketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup ketchup
Answer:
x = 4 ±9i
Step-by-step explanation:
x^2 - 8x + 97 = 0
Complete the square by subtracting 97 from each side
x^2 - 8x =- 97
Take the coefficient of x
-8 and divide by 2
-8/2 = -4
Then square it
(-4)^2 = 16
Add it to each side
x^2 - 8x + 16 = -97+16
(x-4)^2 = -81
Take the square root of each side
x-4 = ±sqrt(-81)
x-4 = ±9i
Add 4 to each side
x = 4 ±9i
Answer:
t2 = 52.8 hours
it will take 52.8 hours if its flow is reduced to 5 litres per minute.
Step-by-step explanation:
The volume of the swimming pool can be written as;
Volume V = flow rate × time
V = R×t
V = R1×t1 = R2×t2
R1×t1 = R2×t2
t2 = R1×t1/R2 ........1
Given;
Flow rate R1 = 12 litres per minute
Flow rate R2 = 5 litres per minute
time t1 = 22 hours
Substituting the given values into equation 1;
t2 = R1×t1/R2 = 12×22/5
t2 = 52.8 hours
it will take 52.8 hours if its flow is reduced to 5 litres per minute.