Answer:
were you supposed to attach a photo because I cant see it? All I can tell you 3+(-7)= -4
Step-by-step explanation:
The box with the bunk bed will not fit in the mini van
Step-by-step explanation:
Step 1 :
Given
Length of the cuboid = 6 feet
Width of the cuboid = 2 feet
Height of the cuboid = 3 feet
The diagonal of the cuboid is

= 7 feet
Step 2 :
The utmost length of the diagonal of the box which the minivan can hold is 6.8 feet
The length of the diagonal of the box containing the bunk bed is 7 feet which is greater than 6.8 feet.
Hence the trunk of the mini van cannot hold the bunk bed
First, we sketch a picture to get a sense of the problem. g(x)=x is a diagonal line through (0,0) with slope = = 1. Since we are interested in the area between x = -4 and x = 8, we find the points on the line at these values. These are (-4, -4) and (8,8).
f(x) is a parabola. It's lowest point occurs when x = 0. It is the point (0,7). At x = -4 and x=8 it has the values 11.8 and 26.2 respectively. That is, it contains the points (-4, 11.8) and (8,26.2).
From these we make a rough sketch (see attachment). This is a sketch and mine is very incorrect when it comes to scale but what matters here is which of the curves is on top, which is below and whether they intersect anywhere in the interval, so my rough sketch is good enough. From the sketch we see that f(x) is always above (greater than) g(x).
To find the area between the curves over the given interval we integrate their difference and since f(x) is strictly greater than g(x) we subtract as follows: f(x) - g(x). The limits of integration are the values -4 and 8 (the x-values between which we are looking for the area.
Now let's integrate:

The integral yields:
^{3} }{3} +7(8)- \frac{ (8)^{2} }{2}) -(\frac{.3 (-4)^{3} }{3} +7(-4)- \frac{ (-4)^{2} }{2}) = 117.6](https://tex.z-dn.net/?f=%20%5Btex%5D%28%5Cfrac%7B.3%20%288%29%5E%7B3%7D%20%7D%7B3%7D%20%2B7%288%29-%20%5Cfrac%7B%20%288%29%5E%7B2%7D%20%7D%7B2%7D%29%20-%28%5Cfrac%7B.3%20%28-4%29%5E%7B3%7D%20%7D%7B3%7D%20%2B7%28-4%29-%20%5Cfrac%7B%20%28-4%29%5E%7B2%7D%20%7D%7B2%7D%29%20%3D%20117.6)
[/tex]
We evaluate this for 8 and for -4 subtracting the second FROM the first to get: