Your digital footprint says a lot about you. It represents your difference from everyone else and that you can’t be exactly like someone else. Your digital footprint also shows that there is one part of you that stays true to itself and never changes. It aligns with a purpose for almost everyone. That purpose is to be yourself because no matter how hard you try to be like someone else, something will always remain true to the real you.
Hope this helps. If this isn’t the type of answer you were looking for, I apologize.
My phone duhhh. If I hadn’t had a phone I wouldn’t be able to send streaks...
Answer:
One sheave means that you are using a single drum winder. They are the worst! Double drum winders control easier, brake better and are much more efficient. They save time ( two skips or cages) and can be clutched to perform faster shift transport. A single drum is slow, unbalanced and can be a nightmare if it trips out during hoisting. If the brake system is not perfect it can be a real hairy experience. For a runaway single drum, there is no counterbalance effect. It always runs to destruction. With a double drum, the driver still has a chance to control the winder to a certain extent and he has two sets of brakes to rely on. A single sheave could also mean a shaft with a single compartment. No second means of escape unless there are ladders or stairways. Not a very healthy situation.
Those are just a few points. I am sure much more can be said in favor of a double drum winder and two or more sheaves in the headgear. Most of the shafts I have worked at have multiple winders and up to ten compartments. They all have a small single drum service winder for emergencies and moves of personnel during shift times. They are referred to as the Mary - Annes. Apparently, the name originated in the U.K. where an aristocratic mine owner named the first such winder after his mistress.
Explanation:
<em>Hope you got it </em>
<em>If you have any question just ask me</em>
<em>If you think this is the best answer please mark me as BRAINLIEST</em>
The first thing we are going to do is find the equation of motion:
ωf = ωi + αt
θ = ωi*t + 1/2αt^2
Where:
ωf = final angular velocity
ωi = initial angular velocity
α = Angular acceleration
θ = Revolutions.
t = time.
We have then:
ωf = (7200) * ((2 * pi) / 60) = 753.60 rad / s
ωi = 0
α = 190 rad / s2
Clearing t:
753.60 = 0 + 190*t
t = 753.60 / 190
t = 3.97 s
Then, replacing the time:
θ1 = 0 + (1/2) * (190) * (3.97) ^ 2
θ1 = 1494.51 rad
For (10-3.97) s:
θ2 = ωf * t
θ2 = (753.60 rad / s) * (10-3.97) s
θ2 = 4544,208 rad
Number of final revolutions:
θ1 + θ2 = (1494.51 rad + 4544.208 rad) * (180 / π)
θ1 + θ2 = 961.57 rev
Answer:
the disk has made 961.57 rev 10.0 s after it starts up