If this is your equation:
![\frac{2}{5} + \frac{3}{5x} = \frac{x+5}{10}](https://tex.z-dn.net/?f=%20%5Cfrac%7B2%7D%7B5%7D%20%2B%20%5Cfrac%7B3%7D%7B5x%7D%20%3D%20%5Cfrac%7Bx%2B5%7D%7B10%7D%20)
Solution:
LCD for 5 and 5x is 5x
![\frac{x}{x} ( \frac{2}{5} )+ \frac{3}{5x} = \frac{x+5}{10}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7Bx%7D%20%28%20%5Cfrac%7B2%7D%7B5%7D%20%29%2B%20%5Cfrac%7B3%7D%7B5x%7D%20%3D%20%5Cfrac%7Bx%2B5%7D%7B10%7D%20)
![\frac{2x}{5x} + \frac{3}{5x} = \frac{x+5}{10}](https://tex.z-dn.net/?f=%20%5Cfrac%7B2x%7D%7B5x%7D%20%2B%20%5Cfrac%7B3%7D%7B5x%7D%20%3D%20%5Cfrac%7Bx%2B5%7D%7B10%7D%20)
![\frac{2x+3}{5x} = \frac{x+5}{10}](https://tex.z-dn.net/?f=%20%5Cfrac%7B2x%2B3%7D%7B5x%7D%20%3D%20%5Cfrac%7Bx%2B5%7D%7B10%7D%20)
![10(2x+3)=5x(x+5)](https://tex.z-dn.net/?f=10%282x%2B3%29%3D5x%28x%2B5%29)
←cross product
20x + 30 = 5x² + 25x ←simplify with distributive property
0 = 5x² + 5x - 30 ←use inverse operations to collect all terms on one side
0 = x² + x - 6 ←if possible divide by numerical GCF (This case 5)
0 = (x + 3)(x - 2) ←Factor
x = -3 or x = 2
Please check by substitution in original equation... Both work
There is no decimal place
Hello!
![\large\boxed{x^{4}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7Bx%5E%7B4%7D%7D)
Recall that:
is equal to
. Therefore:
![\sqrt[3]{x^{2} } = x^{\frac{2}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%20%7D%20%3D%20x%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D)
There is also an exponent of '6' outside. According to exponential properties, when an exponent is within an exponent, you multiply them together. Therefore:
![(x^{\frac{2}{3} })^{6} = x^{\frac{2}{3}* 6 } = x^{\frac{12}{3} } = x^{4}](https://tex.z-dn.net/?f=%28x%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D%29%5E%7B6%7D%20%20%3D%20x%5E%7B%5Cfrac%7B2%7D%7B3%7D%2A%206%20%7D%20%20%3D%20x%5E%7B%5Cfrac%7B12%7D%7B3%7D%20%7D%20%3D%20x%5E%7B4%7D)
Answer:
the answer is linear function lol
Answer: yes
Step-by-step explanation:
Using Pythagorean theorem WHICH ONLY WORKS FOR RIGHT TRIANGLES,
a^2+b^2=c^2 where a and b are the two shortest legs.
12^2+35^2=c^2
144+1225=c^2
c^2=1369
c=
c=37