1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
3 years ago
10

De acuerdo con la tercera ley de movimiento planetario de Kepler, la masa de un planeta es directamente proporcional al cubo de

la distancia promedio entre él y un satélite en órbita, pero inversamente proporcional al cuadrado del período orbital del satélite. La Tierra tiene una masa de 75.97×10^24 kg y está a una distancia promedio de 3.84×10^5 km de la Luna, la cual completa una órbita en 27.3 días. Si la Tierra orbita al Sol en 365.3 días y está a una distancia promedio de 1.496×10^8 km, ¿cuál es la masa del Sol?
Mathematics
1 answer:
Sunny_sXe [5.5K]3 years ago
7 0

Answer:

La masa del Sol es 2.509\times 10^{31} kilogramos.

Step-by-step explanation:

Tras una lectura cuidadosa al enunciado, tenemos que la Tercera Ley de Kepler queda descrita por la siguiente relación:

M \propto \frac{r^{3}}{T^{2}}

M = k\cdot \frac{r^{3}}{T^{2}} (Eq. 1)

Donde:

r - Distancia entre los centros del planeta y el satélite, medido en kilómetros.

T - Período oribital del satélite, medido en días.

k - Constante de proporcionalidad, medida en kilogramo-días cuadrados por kilómetro cúbico.

M - Masa del planeta, medida en kilogramos.

Podemos obtener la masa del Sol mediante la siguiente relación:

\frac{M_{S}}{M_{E}} = \frac{\frac{r_{E}^{3}}{T_{E}^{2}} }{\frac{r_{M}^{3}}{T_{M}^{2}} }

\frac{M_{S}}{M_{E}} = \left(\frac{T_{M}}{T_{E}} \right)^{2}\cdot \left(\frac{r_{E}}{r_{M}} \right)^{3} (Eq. 2)

Donde:

T_{M}, T_{E} - Períodos orbitales de la Luna y la Tierra, medidos en días.

r_{E}, r_{M} - Distancias entre la Tierra y el Sol, así como entre la Luna y la Tierra, medidas en kilómetros.

M_{S}, M_{E} - Masas del Sol y la Tierra, medidos en kilogramos.

Si M_{E} = 75.97\times 10^{24}\,kg, T_{E} = 365.3\,d, T_{M} = 27.3\,d, r_{M} = 3.84\times 10^{5}\,km y r_{E} = 1.496\times 10^{8}\,km, entonces tenemos que la masa del Sol es:

M_{S} = \left(\frac{T_{M}}{T_{E}} \right)^{2}\cdot \left(\frac{r_{E}}{r_{M}} \right)^{3}\cdot M_{E}

M_{S} = \left(\frac{27.3\,d}{365.3\,d} \right)^{2}\cdot \left(\frac{1.496\times 10^{8}\,km}{3.84\times 10^{5}\,km} \right)^{3}\cdot (75.97\times 10^{24}\,kg)

M_{S} = 2.509\times 10^{31}\,kg

La masa del Sol es 2.509\times 10^{31} kilogramos.

You might be interested in
Help me w/ both of them pls The last one is just for me to laugh heheehe
elena55 [62]
1. 16, the ones with fruits
2. 87, with the cars
4 0
3 years ago
Read 2 more answers
3.478 / 37 = ____ can someone explain how to do it I don't understand long division :,)
DiKsa [7]

Answer:

.094

Step-by-step explanation:

Long division is really annoying, so here we go. Have it written on your paper and follow along.

When doing long division, you want to ignore the decimal until the very end. So how many times does 37 fit into 34? It doesn't, so write a 0 on top. Instead ask how many times it can fit into 347. It can only fit 9 times, so write the 9 next to the 0. Now multiply 37 times 9, since it can fit in 9 times. Place that number (333) under the 347. Subtract that and write the new number underneath (14). Bring down the 8 and add it to the end of your new number (now 148). How many times does 37 fit into 148? It goes in 4 times perfectly. Write the 4 on top, and now multiply 4 times 37, since it goes in 4 times. Put that number (148) below the original 148, subtract, and they cancel out. You're done with the problem! Add the decimal back in. Since there 3 numbers after the decimal in 3.478, the decimal will go before 3 numbers in your answer. Hope this helped!

5 0
3 years ago
A directed line segment begins at F(-8, -2), ends at H(8, 6), and is divided in the ratio 8 to 2 by G. What are the coordinates
I am Lyosha [343]

Given:

A directed line segment begins at F(-8, -2), ends at H(8, 6), and is divided in the ratio 8 to 2 by G.

To find:

The coordinates of point G.

Solution:

Section formula: If a point divide a line segment with end points (x_1,y_1) and (x_2,y_2) in m:n, then the coordinates of that point are

Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)

Point G divide the line segment FH in 8:2. Using section formula, we get

G=\left(\dfrac{8(8)+2(-8)}{8+2},\dfrac{8(6)+2(-2)}{8+2}\right)

G=\left(\dfrac{64-16}{10},\dfrac{48-4}{10}\right)

G=\left(\dfrac{48}{10},\dfrac{44}{10}\right)

G=\left(4.8,4.4\right)

Therefore, the coordinates of point G are (4.8, 4.4).

4 0
3 years ago
How many hundreds in 148305
Wittaler [7]

148305:100=\dfrac{148305}{100}=1483.05\\\\Answer:\ In\ 148305\ is\ 1483\ hundreds

6 0
3 years ago
Read 2 more answers
X + 5y - 10 = 0<br> x = 2y - 8
ipn [44]
So since we know what x is, we can substitute it into the original equation for x like so to solve for y...

(2y - 8) + 5y - 10 = 0
2y - 8 + 5y = 10
2y + 5y = 18
7y = 18
y = 18/7 (or about 2.57)

So now we know what x is, we can sub it into the below equation to solve for x...

x = 2(18/7) - 8
x = 36/14 - 8 (or about -5.43)


3 0
3 years ago
Other questions:
  • Based on the given information, what is the measure of the missing length, c?
    6·1 answer
  • A quadratic expression can be factored so that (x - 12)(x + 17) = 0. What are the solutions to the equation?
    7·2 answers
  • Mariah purchases three hair barrettes by using a gift card, which starts with a balance of $35.79. Which expression models her p
    9·2 answers
  • A manufacturer of metal fasteners expects to ship an average of 1197.00 boxes of fasteners per day. A random sample of 24 days p
    5·1 answer
  • Find the area of a trapezoid whose height is 2 meters and whose bases are 6 meters and 10 meters
    12·2 answers
  • 3/4 −(x+ 1 /8 )= 5/16
    6·1 answer
  • Can some one help me with this please and thank you
    12·1 answer
  • the area of a square is a perfect square between 100 and 250 square centimeters. which could be the area of the square? select a
    5·1 answer
  • A map has a 1 inch to 200 miles scale. If Atlanta is 15 inches away from Los Angeles on the map, how far apart are they in real
    11·2 answers
  • What is the relationship of the angles
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!