The key calculation in this problem is figuring out <em>how many times 80 goes into 1,000,000</em>. I'll build up in steps here.
80 x 5 = 400. This gives us a building block on our way to 1,000,000. From here, we can go further and say that 400 x 5 = 2,000; that 2,000 x 5 = 10,000; and finally that 10,000 x 100 = 1,000,000. Altogether, starting from 80, that's
80 x 5 x 5 x 5 x 100 = 80 x 25 x 500 = <em>80 x 12,500</em>
So, since 80 goes into one million 12,500 times, it takes 12,500 minutes for the animal's heart to beat that 1,000,000 times.
Step-by-step explanation:
lo siento much solo si fuera Buena con matimaticas.
Answer:
Thus we find that velocity vector at time t is
(5t+15, 5t^2/2, 4t^2)
Step-by-step explanation:
given that acceleration vector is a funciton of time and at time t

v(t) can be obtained by integrating a(t)
v(t) = 
Thus we use the fact that acceleration is derivative of velocity and velocity is antiderivative of acceleration.
The arbitary constant normally used for integration C is here C vector = initial velocity (u0,v0,w0)
Position vector can be obtained by integrating v(t)
Thus we find that velocity vector at time t is
(5t+15, 5t^2/2, 4t^2)
their is no question how can we answer this
Find a common denominator or the bottom number of a fraction. 5 and 5/6 - 11/6 - 4/6 - 3/4 = 140/24 - 44/24 - 16/24 - 18/24 = 96/24 - 16/24 - 18/24=62/24 or 2 and 7/12.