Answer:
16.97056275
Step-by-step explanation:
12 squared + 12 squared = 288
square root of 288 = 16.97056275
Answer:
$144.70
Step-by-step explanation:
Calculation to determine how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization
First step is to determine the Interest only monthly repayments
Using this formula
I=Prt
where,
P=$6925
r=0.05/1
t=1
Let plug in the formula
I=6925*0.05/12
I= $28.854166666
Second step is to determine the amount she will owe after 4 years
Using this formula
S=P(1+r)n
Let plug in the formula
S=6925*(1+0.05/12)4*12
S=6925*(1+0.05/12)48
S=$8454.70
Third step is to determine the Interest part
Interest =8454.70 - 6925
Interest = $1529.70
Now let determine the how much greater will the amount of interest capitalized be
Interest capitalized=1529.70 - 1385.00
Interest capitalized =$144.70
Therefore how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization is $144.70
Answer:
Step-by-step explanation:
Not sure what form you need this in, but it really doesn't matter, as you'll see in the final equation. I used the vertex form and solved for a:

We are given the vertex (h, k) as the origin (0, 0), and we have a point that the graph goes through as (4, -64). That's our x and y. Plugging in what we have:
gives us
-64 = 16a and
a = -4. That means that the quadratic equation is
which is both vertex form and standard form here, no difference.
Answer: -12.81% decrease
Step-by-step explanation:
1678-1463/1463 * 100 = -12.8128
Answer:
the answer is 30/99, which simplifys to 10/33
Step-by-step explanation:
Hope this helps. You always change the denomiter to 99 for repeating decimal. Good luck