Answer:Backward
Step-by-step explanation:
If the car next to Megan is being Pulled Forward and Megan is seeing only the pulled car then her car appears to be moving backward.
This can be said by using the concept of relative velocity which states that the speed of the body with respect to the other is considered to be at rest.
Here Megan's car appears to move backward with respect to the car next to her due to the existence of relative velocity.
Answer:
The width is 35 cm.
The length is 25 cm.
Step-by-step explanation:
Answer:
A.
Step-by-step explanation:
5>4
6>2
5 is greater than 4, 6 is greater than 2
<h2>✒️Area Between Curves</h2>
![\small\begin{array}{ |c|c} \hline \bold{Area\ Between\ Curves} \\ \\ \textsf{Solving for the intersection of }\rm y = x^2 + 2\textsf{ and }\\ \rm y = 4, \\ \\ \qquad \begin{aligned} \rm y_1 &=\rm y_2 \\ \rm x^2 + 2 &=\rm 4 \\ \rm x^2 &= \rm 2 \\ \rm x &=\rm \pm \sqrt{2} \end{aligned} \\ \\ \textsf{We only need the first quadrant area bounded} \\ \textsf{by the given curves so the integral for the area} \\ \textsf{would then be} \\ \\ \boldsymbol{\displaystyle \rm A = \int_{\ a}^{\ b} {\left( \begin{array}{c}\text{upper} \\ \text{function}\end{array} \right) - \left( \begin{array}{c} \text{lower} \\ \text{function} \end{array} \right)\ dx}} \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} \Big[4 - (x^2 + 2)\Big]\ dx \\ \\ \displaystyle \rm A = \int_{0}^{\sqrt{2}} (2 - x^2)\ dx \\ \\ \rm A = \left[2x - \dfrac{x^3}{3}\right]_{0}^{\sqrt{2}} \\ \\ \rm A = 2\sqrt{2} - \dfrac{\big(\sqrt{2}\big)^3}{3} \\ \\ \rm A = 2\sqrt{2} - \dfrac{2\sqrt{2}}{3} \\ \\\red{\boxed{\begin{array}{c} \rm A = \dfrac{4\sqrt{2}}{3}\textsf{ sq. units} \\ \textsf{or} \\ \rm A \approx 1.8856\textsf{ sq. units} \end{array}}} \\\\\hline\end{array}](https://tex.z-dn.net/?f=%5Csmall%5Cbegin%7Barray%7D%7B%20%7Cc%7Cc%7D%20%5Chline%20%5Cbold%7BArea%5C%20Between%5C%20Curves%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BSolving%20for%20the%20intersection%20of%20%7D%5Crm%20y%20%3D%20x%5E2%20%2B%202%5Ctextsf%7B%20and%20%7D%5C%5C%20%5Crm%20y%20%3D%204%2C%20%5C%5C%20%5C%5C%20%5Cqquad%20%5Cbegin%7Baligned%7D%20%5Crm%20y_1%20%26%3D%5Crm%20y_2%20%5C%5C%20%5Crm%20x%5E2%20%2B%202%20%26%3D%5Crm%204%20%5C%5C%20%5Crm%20x%5E2%20%26%3D%20%5Crm%202%20%5C%5C%20%5Crm%20x%20%26%3D%5Crm%20%5Cpm%20%5Csqrt%7B2%7D%20%5Cend%7Baligned%7D%20%5C%5C%20%5C%5C%20%5Ctextsf%7BWe%20only%20need%20the%20first%20quadrant%20area%20bounded%7D%20%5C%5C%20%5Ctextsf%7Bby%20the%20given%20curves%20so%20the%20integral%20for%20the%20area%7D%20%5C%5C%20%5Ctextsf%7Bwould%20then%20be%7D%20%5C%5C%20%5C%5C%20%5Cboldsymbol%7B%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B%5C%20a%7D%5E%7B%5C%20b%7D%20%7B%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7Bupper%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%5Cend%7Barray%7D%20%5Cright%29%20-%20%5Cleft%28%20%5Cbegin%7Barray%7D%7Bc%7D%20%5Ctext%7Blower%7D%20%5C%5C%20%5Ctext%7Bfunction%7D%20%5Cend%7Barray%7D%20%5Cright%29%5C%20dx%7D%7D%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5CBig%5B4%20-%20%28x%5E2%20%2B%202%29%5CBig%5D%5C%20dx%20%5C%5C%20%5C%5C%20%5Cdisplaystyle%20%5Crm%20A%20%3D%20%5Cint_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%282%20-%20x%5E2%29%5C%20dx%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%20%5Cleft%5B2x%20-%20%5Cdfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D_%7B0%7D%5E%7B%5Csqrt%7B2%7D%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B%5Cbig%28%5Csqrt%7B2%7D%5Cbig%29%5E3%7D%7B3%7D%20%5C%5C%20%5C%5C%20%5Crm%20A%20%3D%202%5Csqrt%7B2%7D%20-%20%5Cdfrac%7B2%5Csqrt%7B2%7D%7D%7B3%7D%20%5C%5C%20%5C%5C%5Cred%7B%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5Crm%20A%20%3D%20%5Cdfrac%7B4%5Csqrt%7B2%7D%7D%7B3%7D%5Ctextsf%7B%20sq.%20units%7D%20%5C%5C%20%5Ctextsf%7Bor%7D%20%5C%5C%20%5Crm%20A%20%5Capprox%201.8856%5Ctextsf%7B%20sq.%20units%7D%20%5Cend%7Barray%7D%7D%7D%20%5C%5C%5C%5C%5Chline%5Cend%7Barray%7D)
#CarryOnLearning
#BrainlyForTrees

Answer:
A. 26.10 cm
B. 118.95 cm
Step-by-step explanation:
ST = 41^2 - 40^2 = c^2 = hypotenuse
ST = 1681 - 1600 = c^2
ST = c^2 = sq rt 681 =26.0959767014 = 26.1cm
Nearest 100th = 26.10
Length = 26.10 cm to nearest 100th
Perimeter of RSU we find (M) of SU first then add that to the other 3 lengths on the exterior of the triangle.
SU = 10^2 + 26.1^2 = c^2 = hypotenuse
SU = 100 + 681.21 = c^2
SU = c^2 = sqrt 781.21 = 27.9501341678 = 27.95cm
P TOTAL RSU = SU + TR + RS + TU
= 27.95 + 40+ 41 + 10 = 118.95cm