Answer:
The simplification for the expression is given as =( 7 + 2(a-3))/(a-3)
Step-by-step explanation:
To simplify the expression we will first convert the words to values in numbers and alphabets.
StartFraction 5 Over a minus 3 EndFraction minus 4 divided by 2 + StartFraction 1 Over a minus 3 EndFraction
= 5/(a-3) -4/2 + 2/(a-3)
Having done that, let's move on and simplify the expression.
5/(a-3) -4/2 + 2/(a-3)
= 5/(a-3) -2+ 2/(a-3)
= 5/(a-3) + 2/(a-3) -2
= 7/(a-3) -2
=( 7 + 2(a-3))/(a-3)
Answer: complex equations has n number of solutions, been n the equation degree. In this case:
Step-by-step explanation:
I start with a variable substitution:
Then:
Solving the quadratic equation:
Replacing for the original variable:
or
Remembering that complex numbers can be written as:
Using this:
Solving for the modulus and the angle:
The possible angle respond to:
Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.
Answer:
Step-by-step explanation:
Answer:
159.68
Step-by-step explanation:
68% of 499 is 339.32
499 -339.32=159.68
hope this helps
<u>Let's consider the facts at hand</u>:
- By Vertical Angle Theorem ⇒ ∠BCE = ∠DCF
- ∠BEC = ∠DFC
- Sides BE = DF
<u>Based on the diagram, triangles BCE and triangles DCF are similar</u>
⇒ based on the Angle-Angle theorem
⇒ since ∠BCE = ∠DCF and ∠BEC = ∠DFC
⇒ the two triangles are similar
Hope that helps!
<em>Definitions of Theorem I used:</em>
- <u><em>Vertical Angle Theorem: </em></u><em>opposite angles of two intersecting lines must be equal</em>
- <u><em>Angle-Angle Theorem:</em></u><em> if two angles of both triangles are equal, then the given triangles must be similar</em>
<em />