Answer:
Two stars (a and b) can have the same luminosity, but different surface area and temperature if the following condition is met:
(T_a^4)(R_a^2) = (T_b^4)(R_b^2)
Explanation:
The luminosity of a star is the total energy that produces in one second. It depends on the size of the star and its surface temperature.
L = σ(T^4)(4πR^2)
L is the luminosity f the star, T is the temperature of the surface of the star and R is its radius.
Two stars can have the same luminosity if the relation between the radius and the surface temperature is maintained.
To see this lets suposed you have 2 stars, a and b, and the luminosities of each one of them:
L_a = σ(T_a^4)(4πR_a^2)
L_b = σ(T_b^4)(4πR_b^2)
you can assume that L_a and L_b are equal:
σ(T_a^4)(4πR_a^2) = σ(T_b^4)(4πR_b^2)
Now, you can cancel the constants:
(T_a^4)(R_a^2) = (T_b^4)(R_b^2)
as long as this relation between a and b is true, then the luminosity can be the same.
Answer:Nicholas Steno first formulated the principles that allow scientists to determine the relative ages of rocks in the 17th century. Steno stated that sedimentary rocks are formed in continuous, horizontal layers, with younger layers on top of older layers.
Explanation:
Answer:
Water
Explanation:
Acetone has a higher vapour pressure than water because acetone molecules only experience dispersion forces and diploe interactions as the dominant intermolecular forces.
In addition to these mentioned, water molecules are held together by strong hydrogen bonds. Therefore, water has a much lower vapour pressure than acetone and requires greater energy to break these hydrogen bonds and convert the liquid water to gaseous state.
Answer:
Tonga is absolutely gorgeous in my opinion, and everyone should find the time to travel there at some point in their lifetime.
Explanation: