9:7
Ratios are always simplified so by dividing both 18 and 14 by 2 you get 9 and seven. Because yellow triangles is stated first the 9 is put before the 7 blue triangles.
Given:
Sides of triangles in the options.
To find:
Which could NOT be the lengths of the sides of a triangle.
Solution:
Condition for triangle:
Sum of two smaller sides of a triangle must be greater than the longest side.
In option A,

Sides 5 in, 5 in, 5 in are the lengths of the sides of a triangle.
In option B,

Sides 10 cm, 15 cm, 20 cm are the lengths of the sides of a triangle.
In option C,

Sides 3 in, 4 in, 5 in are the lengths of the sides of a triangle.
In option D,

Since, the sum of two smaller sides is less than the longest side, therefore the sides 8 ft, 15 ft, 5 ft are not the lengths of the sides of a triangle.
Therefore, the correct option is D.
Answer:
Learning to subtract rational numbers by adding the additive inverse can be explained to your child as being the same as finding the opposite. This can even be described to your child as being a similar concept to one that they have worked with in the past where subtraction is the opposite of addition.
Additive inverse can be defined as adding a number with the opposite or the negative of that number to equal zero. The additive inverse of 1 is (-1), the additive inverse of 2 is (-2) and so on.
Example: 5 + (-5) = 0
In this example, (-5) is the additive inverse.
You can then take additive inverse one step when finding the additive inverse when subtracting rational numbers.
Example: 7 - 4 = 7 + (-4)
3 = 3
When finding the inverse, it is important to keep in mind that what you do to one side, you must do the opposite to another. In the example above, because you subtracted a positive four on one side, you are going to add a negative four to the other. This will make the equation equal on both sides.
Step-by-step explanation:
The common ratio of the consecutive numbers is obtain by dividing the second term by the first term. From the given, that is
r = 1.2 / 1.5 = 0.8
Thus, the common ratio of the consecutive terms of the given sequence is 0.8.
Mark brainliest please
Hope this helps you