Answer:
The expected value of X is
and the variance of X is 
The expected value of Y is
and the variance of Y is 
Step-by-step explanation:
(a) Let X be a discrete random variable with set of possible values D and probability mass function p(x). The expected value, denoted by E(X) or
, is

The probability mass function
of X is given by

Since the bus driver is equally likely to drive any of the 4 buses, the probability mass function
of Y is given by

The expected value of X is
![E(X)=\sum_{x\in [28,32,42,44]} x\cdot p_{X}(x)](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5Ccdot%20p_%7BX%7D%28x%29)

The expected value of Y is
![E(Y)=\sum_{x\in [28,32,42,44]} x\cdot p_{Y}(x)](https://tex.z-dn.net/?f=E%28Y%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5Ccdot%20p_%7BY%7D%28x%29)

(b) Let X have probability mass function p(x) and expected value E(X). Then the variance of X, denoted by V(X), is
![V(X)=\sum_{x\in D} (x-\mu)^2\cdot p(x)=E(X^2)-[E(X)]^2](https://tex.z-dn.net/?f=V%28X%29%3D%5Csum_%7Bx%5Cin%20D%7D%20%28x-%5Cmu%29%5E2%5Ccdot%20p%28x%29%3DE%28X%5E2%29-%5BE%28X%29%5D%5E2)
The variance of X is
![E(X^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{X}(x)](https://tex.z-dn.net/?f=E%28X%5E2%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5E2%5Ccdot%20p_%7BX%7D%28x%29)


The variance of Y is
![E(Y^2)=\sum_{x\in [28,32,42,44]} x^2\cdot p_{Y}(x)](https://tex.z-dn.net/?f=E%28Y%5E2%29%3D%5Csum_%7Bx%5Cin%20%5B28%2C32%2C42%2C44%5D%7D%20x%5E2%5Ccdot%20p_%7BY%7D%28x%29)


Divide the distance on the map by 2 to get the number of 8km segments there are, then multiply that by 8km for total distance.
16 cm / 2cm = 8
8 x 8km = 64km total.
Neither one will ever hit the axis I think? if its x=3.5 then its horizontal but its above the x axis. Same with the second one. its vertical and will never hit the y axis. Not sure how to write that into those boxes but I think there isn't an intercept.
Answer:
c
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
Given that U is the midpoint of TV, then
TU = UV , substitute values
8x + 11 = 12x - 1 ( subtract 12x from both sides )
- 4x + 11 = - 1 ( subtract 11 from both sides )
- 4x = - 12 ( divide both sides by - 4 )
x = 3
Thus
TU = 8(3) + 11 = 24 + 11 = 35
UV = 12(3) - 1 = 36 - 1 = 35