The function represents a reflection of f(x) = 5(0.8)x across the x-axis is f(x) = -5(0.8)^x
<h3>Reflection of functions and coordinates</h3>
Images that are reflected are mirror images of each other. When a point is reflected across the line y = x, the x-coordinates and y-coordinates change their position. In a similar manner, when a point is reflected across the line y = -x, the coordinates <u>changes position but are negated.</u>
Given the exponential function below
f(x) = 5(0.8)^x
If the function f(x) is reflected over the x-axis, the resulting function will be
-f(x)
This means that we are going to negate the function f(x) as shown;
f(x) = -5(0.8)^x
Hence the function represents a reflection of f(x) = 5(0.8)x across the x-axis is f(x) = -5(0.8)^x
Learn more on reflection here: brainly.com/question/1908648
#SPJ1
Answer:
(5, 9 )
Step-by-step explanation:
Under a reflection in the y- axis
a point (x, y ) → (- x, y ), thus
(- 5, 9 ) → (5, 9 )
When an equation is in standard form, x isn't negative so she should divide everything by a negative 1 to change it into a positive equation.
Answer:
Range: [-7, 8]
General Formulas and Concepts:
<u>Algebra I</u>
- Reading a coordinate plane
- Range is the set of y-values that are outputted by function f(x)
- Interval Notation: [Brackets] denote inclusion, (Parenthesis) denote exclusion
Step-by-step explanation:
According to the graph, our y-values span from -7 to 8. Since both are closed dot, they are included in the range:
Range: [-7, 8]
9514 1404 393
Answer:
Step-by-step explanation:
The thrust of the question is to make sure you understand that increasing the y-coordinate of a point will move the point upward, and decreasing it will move the point downward.
That is adding a positive value "k" to x^2 will move the point (x, x^2) to the point (x, x^2+k), which will be above the previous point by k units.
If k is subtracted, instead of added, then the point will be moved downward.
The blanks are supposed to be filled with <u> positive </u>, and <u> negative </u>.
_____
<em>Comment on the question</em>
The wording of the statement you're completing is a bit odd. If k is negative (-2, for example), this statement is saying the graph is translated down -2 units. It is not. It is translated down |-2| = 2 units. The direction of translation depends on the sign of k. The amount of translation depends on the magnitude of k.
If you thoroughly understand (x, y) coordinates and how they are plotted on a graph, it should be no mystery that changing the y-coordinate will change the vertical position of the graph.