Answer:
The length of the segment F'G' is 7.
Step-by-step explanation:
From Linear Algebra we define reflection across the y-axis as follows:
,
(Eq. 1)
In addition, we get this translation formula from the statement of the problem:
,
(Eq. 2)
Where:
- Original point, dimensionless.
- Transformed point, dimensionless.
If we know that
and
, then we proceed to make all needed operations:
Translation




Reflection


Lastly, we calculate the length of the segment F'G' by Pythagorean Theorem:
![F'G' = \sqrt{(5-5)^{2}+[(-1)-6]^{2}}](https://tex.z-dn.net/?f=F%27G%27%20%3D%20%5Csqrt%7B%285-5%29%5E%7B2%7D%2B%5B%28-1%29-6%5D%5E%7B2%7D%7D)

The length of the segment F'G' is 7.
The answer is B your welcome
You just want to simplify right?!
45. (a^2b^3)(ab)^-2
= (a^2b^3)(a^-2b^-2)
= b
46. (-3x^3y)^2(4xy^2)
= (-9x^6y^2)(4xy^2)
= -36x^7y^4
47. 3c^2d(2c^3d^5) / 15c^4d^2
= 6c^5d^6 / 15c^4d^2
= 2/5c1/4x^4
48. -10g^6h^9(g^2h^3) / 30g^3h^3
= -10g^8h^12 / 30g^3h^3
= -1/3g^5h^9
49. 5x^4y^2(2x^5y^6) / 20x^3y^5
= 10x^9y^8 / 20x^3y^5
= 1/2x^6 1/3y^3
50. -12n^7p^5(n^2p^4) / 36n^6p^7
= -12n^9p^9 / 36n^6p^7
= -1/3n^3p^2
(Sorry it’s messy it’d look better if my phone could actually put the numbers to the power)
Answer:
dssfgffdddfggrrghygfdedfhyjjujtg