Answer:
H0: μ = 5 versus Ha: μ < 5.
Step-by-step explanation:
Given:
μ = true average radioactivity level(picocuries per liter)
5 pCi/L = dividing line between safe and unsafe water
The recommended test here is to test the null hypothesis, H0: μ = 5 against the alternative hypothesis Ha: μ < 5.
A type I error, is an error where the null hypothesis, H0 is rejected when it is true.
We know type I error can be controlled, so safer option which is to test H0: μ = 5 vs Ha: μ < 5 is recommended.
Here, a type I error involves declaring the water is safe when it is not safe. A test which ensures that this error is highly unlikely is desirable because this is a very serious error. We prefer that the most serious error be a type I error because it can be explicitly controlled.
You just multiply the numerators of the fractions and the denominators of the fractions together, and then reduce the fraction to simplify it from that point on.
Answer:
3.333333333333...
Step-by-step explanation:
The equation represented by Ms. Wilson's model is n² + 13n + 40 = (n + 8)(n + 5)
<h3>How to determine the equation of the model?</h3>
The partially completed model is given as:
| n
| n²
5 | 5n | 40
By dividing the rows and columns, the complete model is:
| n | 8
n | n² | 8n
5 | 5n | 40
Add the cells, and multiply the leading row and columns
n² + 8n + 5n + 40 = (n + 8)(n + 5)
This gives
n² + 13n + 40 = (n + 8)(n + 5)
Hence, the equation represented by Ms. Wilson's model is n² + 13n + 40 = (n + 8)(n + 5)
Read more about polynomials at:
brainly.com/question/4142886
#SPJ4