1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
3 years ago
11

The box plots below show the average daily temperatures in July and August for a U.S. city: two box plots shown. The top one is

labeled July. Minimum at 80, Q1 at 88, median at 96, Q3 at 103, maximum at 105. The bottom box plot is labeled August. Minimum at 80, Q1 at 82, median at 84, Q3 at 90, maximum at 100 What can you tell about the means for these two months?
Mathematics
1 answer:
sergey [27]3 years ago
7 0

The <em>correct answer</em> is:


The mean for July is smaller than the median; and

the mean for August is larger than the median.


Explanation:


A distribution with a positive skew would have a longer whisker in the positive direction than in the negative direction. A larger mean than median would also indicate a positive skew.


Alternatively, a distribution with a negative skew would have a longer whisker in the negative direction than in the positive direction. A smaller mean than median would also indicate a negative skew.


The whisker in the negative direction for July is longer than the whisker in the positive direction. This indicates a negative skew.


The whisker in the positive direction for August is longer than the whisker in the negative direction. This indicates a positive skew.

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
On Mars, an object weighs 38% as much as on Earth. How much would a person who weighs 165 pounds on Earth weigh on Mars?
nikdorinn [45]

Answer:

62.7

Step-by-step explanation:

165 * 0.38 = 62.7


This is assuming you mean an object weights 38% less on mars then earth, if its the other way around(they weight 38% more on mars then earth) it would be,


165 * 1.38 = 227.7

8 0
3 years ago
Read 2 more answers
Insert four arithmetic means between -1 and 14
34kurt

Answer:

Step-by-step explanation:

d = 7%2F2

-2, -2+7%2F2, -2+2%287%2F2%29, -2+3%287%2F2%29, 12

-2, -4%2F2+7%2F2, -4%2F2+14%2F2, --4%2F2+21%2F2, 12

-2, 3%2F2, 10%2F2, 17%2F2, 12

 

-2, 3%2F2, 5, 17%2F2, 12

5 0
2 years ago
the labelled price of a bag is Rs1,580. If 5% discount is allowed, calculate the selling price of the watch.solve it​
Ipatiy [6.2K]

Step-by-step explanation:

If there 5% is allowed in Rs 1,580 than the selling price of the watch is 1,501

7 0
3 years ago
Elija, Emily, Edward, and Esme each drew a conclusion about the figure below.
erik [133]
Please read the attached file

5 0
3 years ago
Read 2 more answers
Other questions:
  • 1/10
    11·1 answer
  • How many 5 card hands contain exactly 2 queens
    9·1 answer
  • Subtract (7x - 10)-(-6x - 8).
    10·1 answer
  • Angelo chooses a number from 1 to 10. What is the probability that he chooses an odd number or a multiple of 5?
    10·1 answer
  • 13822 to 1 significant figure
    8·1 answer
  • What is -12 + (-66) + (-48)
    5·2 answers
  • 4. The amount of money in Dave's checking account for the first week of
    11·1 answer
  • hi pls help me timed test precalculus...im really sick right now so i could not do half of them pls give me whatever one u have.
    13·1 answer
  • An amusement park sold 27 child tickets. The other 23 tickets it sold were adult tickets. What is the ratio of the number of adu
    14·1 answer
  • Determine the slope of the line that runs through points (-3,6) And (0,-8) using the slope formula.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!