Answer:
5, 6
Step-by-step explanation :
Because I've gone ahead with trying to parameterize
directly and learned the hard way that the resulting integral is large and annoying to work with, I'll propose a less direct approach.
Rather than compute the surface integral over
straight away, let's close off the hemisphere with the disk
of radius 9 centered at the origin and coincident with the plane
. Then by the divergence theorem, since the region
is closed, we have

where
is the interior of
.
has divergence

so the flux over the closed region is

The total flux over the closed surface is equal to the flux over its component surfaces, so we have


Parameterize
by

with
and
. Take the normal vector to
to be

Then the flux of
across
is




When simplified the answer is -2n^3+13
Answer:
i'm not sure but if you get a calculator and add the percentages up you will probably get the answer
Step-by-step explanation:
get calculator, use calculator
Answer:
A
Step-by-step explanation:
edge2021