Answer:
20 ft by 60 ft
Step-by-step explanation:
"What should the dimensions of the garden be to maximize this area?"
If y is the length of the garden, parallel to the stream, and x is the width of the garden, then the amount of fencing is:
120 = 3x + y
And the area is:
A = xy
Use substitution:
A = x (120 − 3x)
A = -3x² + 120x
This is a downward facing parabola. The maximum is at the vertex, which we can find using x = -b/(2a).
x = -120 / (2 · -3)
x = 20
When x = 20, y = 60. So the garden should be 20 ft by 60 ft.
36. U get 36 because 36 divided by 4 equals 9 and 36 and 4 can’t go any further than that.
The answer to (-5 × 2) 3 = -30.
Given:
The focus of the parabola is at (6,-4).
Directrix at y=-7.
To find:
The equation of the parabola.
Solution:
The general equation of a parabola is:
...(i)
Where, (h,k) is vertex, (h,k+p) is the focus and y=k-p is the directrix.
The focus of the parabola is at (6,-4).

On comparing both sides, we get

...(ii)
Directrix at y=-7. So,
...(iii)
Adding (ii) and (iii), we get



Putting
in (ii), we get



Putting
in (i), we get


Therefore, the equation of the parabola is
.