Halogens (atoms with 7 valence electrons) and Hydrogen
or generally, atoms with their shells almost full
The statement “Only the “Conclusion” section discusses whether the original hypothesis was supported, and both sections suggest further research”, best describes the difference between analysis and conclusion.
Answer: Option 4
<u>Explanation:
</u>
In research, we do experiments and derive the results. Then, those results were analyzed by us. In this analysis part, we compare our results with the related results published elsewhere. Also, we correlate the similarities and point out the differences between our analysis and other reported results.
In conclusion part, we have to check hypothesis or it supported. And, we summarise our analysis and figure out the further research need to be done on that to improvise our research. So, the final statement is the correct option which best describes the difference between analysis and conclusion.
Answer:
bond angles of 120 degrees.
Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
Glucose is a simple sugar with the molecular formula C6H12O6. It is a carbohydrate.