You need to understand that you're solving for the average, which you already know: 90. Since you know the values of the first three exams, and you know what your final value needs to be, just set up the problem like you would any time you're averaging something.
Solving for the average is simple:
Add up all of the exam scores and divide that number by the number of exams you took.
(87 + 88 + 92) / 3 = your average if you didn't count that fourth exam.
Since you know you have that fourth exam, just substitute it into the total value as an unknown, X:
(87 + 88 + 92 + X) / 4 = 90
Now you need to solve for X, the unknown:
87
+
88
+
92
+
X
4
(4) = 90 (4)
Multiplying for four on each side cancels out the fraction.
So now you have:
87 + 88 + 92 + X = 360
This can be simplified as:
267 + X = 360
Negating the 267 on each side will isolate the X value, and give you your final answer:
X = 93
Now that you have an answer, ask yourself, "does it make sense?"
I say that it does, because there were two tests that were below average, and one that was just slightly above average. So, it makes sense that you'd want to have a higher-ish test score on the fourth exam.
This is an example of a systematic sample.
Dr. Jon developed a system in order to get a random sample. His plan was to survey the 4th student that entered his classroom.
To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term
Answer:
Step-by-step explanation:
Part A: You can only use Pythagorean's Theorem on a right triangle.
Part B: The side across from the right angle is the hypotenuse. It has a length of 15.
Part C: To find the missing side using Pythagorean's Theorem:
and
and
and
a = 10.20
Answer:
497,725
just subtract smallest from largest to get the difference
724,435 - 226,710