1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
15

A monkey is swinging from the tree. On the first swing she passes through an arc of 20 m. With each swing she passes through an

arc 4/5 the length of the previous swing. How long was the monkeys 1st swing? What is the total distance the monkey has traveled when she completes her 10th swing?
Mathematics
2 answers:
anygoal [31]3 years ago
4 0

Answer:

Step-by-step explanation:

The answer is 89.26 m

Tema [17]3 years ago
4 0

Answer:

Step-by-step explanation:

=89

You might be interested in
Which statement is an example of the distributive property? 3 + (2)(15) = 3(2) + 3(15) 3(2 + 15) = 3 + 2(3) + 15 3(2 + 15) = 3(2
natka813 [3]
It would be 3(2+15)= 3(2) + 3(15)
Hope this helps❤️
5 0
3 years ago
Read 2 more answers
The spread of a virus is modeled by V (t) = −t 3 + t 2 + 12t,
VashaNatasha [74]

Functions can be used to model real life scenarios

  • The reasonable domain is \mathbf{[0,\infty)}.
  • The average rate of change from t = 0 to 2 is 20 persons per week
  • The instantaneous rate of change is \mathbf{V'(t) = -3t^2 + 2t + 12}.
  • The slope of the tangent line at point (2,V(20) is 10
  • The rate of infection at the maximum point is 8.79 people per week

The function is given as:

\mathbf{V(t) = -t^3 + t^2 + 12t}

<u>(a) Sketch V(t)</u>

See attachment for the graph of \mathbf{V(t) = -t^3 + t^2 + 12t}

<u />

<u>(b) The reasonable domain</u>

t represents the number of weeks.

This means that: <em>t cannot be negative.</em>

So, the reasonable domain is: \mathbf{[0,\infty)}

<u />

<u>(c) Average rate of change from t = 0 to 2</u>

This is calculated as:

\mathbf{m = \frac{V(a) - V(b)}{a - b}}

So, we have:

\mathbf{m = \frac{V(2) - V(0)}{2 - 0}}

\mathbf{m = \frac{V(2) - V(0)}{2}}

Calculate <em>V(2) and V(0)</em>

\mathbf{V(2) = (-2)^3 + (2)^2 + 12 \times 2 = 20}

\mathbf{V(0) = (0)^3 + (0)^2 + 12 \times 0 = 0}

So, we have:

\mathbf{m = \frac{20 - 0}{2}}

\mathbf{m = \frac{20}{2}}

\mathbf{m = 10}

Hence, the average rate of change from t = 0 to 2 is 20

<u>(d) The instantaneous rate of change using limits</u>

\mathbf{V(t) = -t^3 + t^2 + 12t}

The instantaneous rate of change is calculated as:

\mathbf{V'(t) = \lim_{h \to \infty} \frac{V(t + h) - V(t)}{h}}

So, we have:

\mathbf{V(t + h) = (-(t + h))^3 + (t + h)^2 + 12(t + h)}

\mathbf{V(t + h) = (-t - h)^3 + (t + h)^2 + 12(t + h)}

Expand

\mathbf{V(t + h) = (-t)^3 +3(-t)^2(-h) +3(-t)(-h)^2 + (-h)^3 + t^2 + 2th+ h^2 + 12t + 12h}\mathbf{V(t + h) = -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h}

Subtract V(t) from both sides

\mathbf{V(t + h) - V(t)= -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h - V(t)}

Substitute \mathbf{V(t) = -t^3 + t^2 + 12t}

\mathbf{V(t + h) - V(t)= -t^3 -3t^2h -3th^2 - h^3 + t^2 + 2th+ h^2 + 12t + 12h +t^3 - t^2 - 12t}

Cancel out common terms

\mathbf{V(t + h) - V(t)= -3t^2h -3th^2 - h^3  + 2th+ h^2  + 12h}

\mathbf{V'(t) = \lim_{h \to \infty} \frac{V(t + h) - V(t)}{h}} becomes

\mathbf{V'(t) = \lim_{h \to \infty} \frac{ -3t^2h -3th^2 - h^3  + 2th+ h^2  + 12h}{h}}

\mathbf{V'(t) = \lim_{h \to \infty} -3t^2 -3th - h^2  + 2t+ h  + 12}

Limit h to 0

\mathbf{V'(t) = -3t^2 -3t\times 0 - 0^2  + 2t+ 0  + 12}

\mathbf{V'(t) = -3t^2 + 2t + 12}

<u>(e) V(2) and V'(2)</u>

Substitute 2 for t in V(t) and V'(t)

So, we have:

\mathbf{V(2) = (-2)^3 + (2)^2 + 12 \times 2 = 20}

\mathbf{V'(2) = -3 \times 2^2 + 2 \times 2 + 12 = 4}

<em>Interpretation</em>

V(2) means that, 20 people were infected after 2 weeks of the virus spread

V'(2) means that, the rate of infection of the virus after 2 weeks is 4 people per week

<u>(f) Sketch the tangent line at (2,V(2))</u>

See attachment for the tangent line

The slope of this line is:

\mathbf{m = \frac{V(2)}{2}}

\mathbf{m = \frac{20}{2}}

\mathbf{m = 10}

The slope of the tangent line is 10

<u>(g) Estimate V(2.1)</u>

The <em>value of 2.1 </em>is

\mathbf{V(2.1) = (-2.1)^3 + (2.1)^2 + 12 \times 2.1}

\mathbf{V(2.1) = 20.35}

<u />

<u>(h) The maximum number of people infected at the same time</u>

Using the graph, the maximum point on the graph is:

\mathbf{(t,V(t) = (2.361,20.745)}

This means that:

The maximum number of people infected at the same time is approximately 21.

The rate of infection at this point is:

\mathbf{m = \frac{V(t)}{t}}

\mathbf{m = \frac{20.745}{2.361}}

\mathbf{m = 8.79}

The rate of infection is <em>8.79 people per week</em>

Read more about graphs and functions at:

brainly.com/question/18806107

6 0
3 years ago
(-9x^2– 2x) - (-9x^2 – 3x)
Oksana_A [137]

Answer:

x

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Ari stocks shelves at a grocery store ,he puts 35 cans of juice on each shelf . The shelf has 4 equal rows and another row with
Lera25 [3.4K]

Answer:

8 cans

Step-by-step explanation:

If you divide 35 by 4 you'll get 8.75 which means .75 are the 3 cans left over on the other row

5 0
4 years ago
Read 2 more answers
28 is equal to how many hundredths and tenths
natita [175]

Answer:

0 hundredths. 2 tenths and 8 ones

8 0
3 years ago
Read 2 more answers
Other questions:
  • David canoed 3.78 miles before lunch and 4.20 miles after lunch. How many miles did he travel in total?
    7·2 answers
  • Find the measure of one interior angle of a regular pentagon
    8·1 answer
  • If kite CDEF is dilated by a scale factor of 6 with a center of dilation at the origin, what is the area of kite C'D'E'F'?
    14·2 answers
  • Give an example of two quantities in the real world that are additive inverses.
    6·2 answers
  • Hailey had 1/5 of a chocolate bar. She decided to share it with her 2 best friends. How much of the chocolate bar did Sarah and
    11·1 answer
  • If 5x-2=23, then find the value of x​
    11·1 answer
  • Jayden goes out to eat with his friend, at the local diner. He orders a chicken quesadilla for $11.00. If he plans on leaving a
    14·1 answer
  • At the beginning of the month, Kimberly had $65.78. Since then,she has received three payments of $32.50 from her babysitting jo
    14·1 answer
  • If the smaller of two numbers is one-half of the larger number and the sum of the two numbers is 69, what are the two numbers
    7·1 answer
  • If A It is given that R = {(a, 1), (b, 2), (C, 3)}. Find the range and domain of R.​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!