Given the table showing the distance Randy drove on one day of her vacation as follows:
![\begin{tabular} {|c|c|c|c|c|c|} Time (h)&1&2&3&4&5\\[1ex] Distance (mi)&55&110&165&220&275 \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATime%20%28h%29%261%262%263%264%265%5C%5C%5B1ex%5D%0ADistance%20%28mi%29%2655%26110%26165%26220%26275%0A%5Cend%7Btabular%7D)
The rate at which she travels is given by

If Randy has driven for one more hour at the same rate, the number of hours she must have droven is 6 hrs and the total distance is given by
distance = 55 x 6 = 330 miles.
Answer:
25 and 21 hours respectively
Step-by-step explanation:
Let the number of hours worked by each welder be x and y respectively.
They worked a total of 46 hours. This means :
x + y = 46 hours.......(I)
Now, given their hourly charges, since we have the total amount of money realized, we can make an equation out of it. This means:
34x + 39y = 1669........(ii)
We then solve both simultaneously. From I, x = 46 -y
We can substitute this into ii
34(46 -y) + 39y = 1669
1564 -34y + 39y = 1669
5y = 1669 - 1564
5y = 105
y = 105/5 = 21
x = 46 - y
x = 46 - 21 = 25 hours
The numbers of hours worked by the welders are 25 and 21 respectively
Y = -2 x - 9
3 x - 4(-2 x - 9 ) = -8
3 x + 8 x + 36 = - 8
11 x = - 44, x = - 4
y = 8 - 9 , y = -1
This is a unique solution, the system is independent.
Answer:
mean is the best way
Step-by-step explanation: