Answer:
See explanation
Step-by-step explanation:
Consider triangles PTS and QTR. In these triangles,
- given;
- given;
- as vertical angles when lines PR and SQ intersect.
Thus,
by AAS postulate.
Congruent triangles have congruent corresponding sides, so

Consider segments PR and QS:
![PR=PT+TR\ [\text{Segment addition postulate}]\\ \\QS=QT+TS\ [\text{Segment addition postulate}]\\ \\PT=QT\ [\text{Proven}]\\ \\ST=RT\ [\text{Given}]](https://tex.z-dn.net/?f=PR%3DPT%2BTR%5C%20%5B%5Ctext%7BSegment%20addition%20postulate%7D%5D%5C%5C%20%5C%5CQS%3DQT%2BTS%5C%20%5B%5Ctext%7BSegment%20addition%20postulate%7D%5D%5C%5C%20%5C%5CPT%3DQT%5C%20%5B%5Ctext%7BProven%7D%5D%5C%5C%20%5C%5CST%3DRT%5C%20%5B%5Ctext%7BGiven%7D%5D)
So,
![PR=SQ\ [\text{Substitution property}]](https://tex.z-dn.net/?f=PR%3DSQ%5C%20%5B%5Ctext%7BSubstitution%20property%7D%5D)
Answer:
A=ε*l*c
A= 2- log₁₀ % T
Step-by-step explanation:
There is a linear relationship between the concentration of a sample and absorbance according to Beer-Lambert Law.
A=ε*l*c
where;
A=absorbance
ε=absorption coefficient
l=path length
c=concentration
Because % transmittance is transmittance value multiplied by 100 then, the equation that will allow us calculate absorbance from % transmittance value will be;
A= 2- log₁₀ % T where T is transmittance.
Answer:
Step-by-step eNow examine the right triangle on the left in the figure.
x%2F10=sin%2850%29, in reference to the 50 degree angle, hypotenuse is that slanted segment of 10 units, and "x" is the opposite side from the 50 degree angle.
Are we subtracting the total or ? What's the question. , If so that would be 310 members as of the $5 raise in fees
Answer:
The volume of the figure is 590.71 mm³
Step-by-step explanation:
To solve this problem we have to find the volume of the cylinder and the volume of the rectangular prism and add them
To calculate the volume of a cylinder we have to use the following formula:
v = volume
h = height = 3.65mm
π = 3.14
r = radius = 3.2mm
v = (π * r²) * h
we replace the unknowns with the values we know
v = (3.14 * (3.2mm)²) * 3.65mm
v = (3.14 * 10.24mm²) * 3.65mm
v = 32.1536² * 3.65mm
v = 117.36mm³
To calculate the volume of a rectangular prism we have to use the following formula:
v = volume
w = width = 14.23mm
l = length = 10.08mm
h = height = 3.3mm
v = w * h * l
we replace the values that we know
v = 14.23mm * 10.08mm * 3.3mm
v = 473.347mm³
we add the volumes
v = 117.36mm³ + 473.347mm³
v = 590.707
round to the neares hundredth
v = 590.707 mm³ = 590.71 mm³
The volume of the figure is 590.71 mm³