1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
7

Sylvester plans to rent a car to tour the West Coast. The cost of the rental is $53 per day. The cost of the deposit is $99 for

as long as Sylvester needs the car. Write a linear equation that represents this scenario.
Mathematics
2 answers:
My name is Ann [436]3 years ago
8 0


Amount Due when he returns car = $53 x Days - Deposit
Luda [366]3 years ago
4 0

Answer:

C = 53D + 99

Step-by-step explanation:

The cost (C) is equal to $53 per day (53 multiplied by the number of days, D) plus the fixed deposit (+ 99)

Expressed as a linear equation below

C = 53D + 99

You might be interested in
R (-3,1) and S (-1,3) are points on a circle. If RS is a diameter, find the equation of the circle.​
ELEN [110]

Answer:

\sf (x+2)^2+(y-2)^2=2

Step-by-step explanation:

If RS is the diameter of the circle, then the midpoint of RS will be the center of the circle.

\sf midpoint=\left(\dfrac{x_s-x_r}{2}+x_r,\dfrac{y_s-y_r}{2}+y_r \right)

             \sf =\left(\dfrac{-1-(-3)}{2}+(-3),\dfrac{3-1}{2}+1 \right)

             \sf =(-2, 2)

Equation of a circle:   \sf (x-h)^2+(y-k)^2=r^2

(where (h, k) is the center and r is the radius)

Substituting found center (-2, 2) into the equation of a circle:

\sf \implies (x-(-2))^2+(y-2)^2=r^2

\sf \implies (x+2)^2+(y-2)^2=r^2

To find \sf r^2, simply substitute one of the points into the equation and solve:

\sf \implies (-3+2)^2+(1-2)^2=r^2

\sf \implies 1+1=r^2

\sf \implies r^2=2

Therefore, the equation of the circle is:

\sf (x+2)^2+(y-2)^2=2

4 0
2 years ago
After unloading 96 pounds of mulch from the truck, there were still 24 pounds
Dennis_Churaev [7]

Answer:

120

Step-by-step explanation:

To find the answer you just have to add 24 and 96 together to get 120.

4 0
3 years ago
A cylindrical soup can has a diameter of 3.6 in. and is 6.4 in. tall. Find the volume of the can.
arsen [322]
<h2>⚘Your Answer:------</h2>

<h3><u>Given</u><u> </u><u>Information</u><u>:</u></h3>

  • <u>Diameter of can</u>:- 3.6 cm
  • <u>Height of</u><u> </u><u>can</u><u>:</u><u>-</u> 6.4 cm

<h3><u>To</u><u> </u><u>Find</u><u> </u><u>Out</u><u>:</u></h3>

  • <u>Volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>Can</u><u>.</u>

<h3><u>Solution</u><u>:</u></h3>

Radius = (Diameter/2)

ㅤㅤㅤㅤ3.6 cm/2

ㅤㅤㅤㅤ1.8 cm

<u>So</u><u>,</u><u> </u><u>Radius</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>soup</u><u> </u><u>can</u><u> </u><u>is</u> 1.8 cm.

Volume øf cylinder = Volume øf can

Volume of cylinder = π r²h

(π = 22/7)

(r = radius = 1.8 cm)

(h = height = 6.4 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ= 22/7×(1.8 cm)²× 6.4 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ= 22/7× 3.24 cm² × 6.4 cm

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ= 22/7 × 20.736 cm³

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ= (456.192/7) cm³

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ= 65.17 cm³

So, the Volume of the soup can is 65.17 cm³

ㅤㅤㅤㅤㅤㅤㅤㅤ⚘Thank You

7 0
2 years ago
Consider the following equation. f(x, y) = y3/x, P(1, 2), u = 1 3 2i + 5 j (a) Find the gradient of f. ∇f(x, y) = Correct: Your
BaLLatris [955]

f(x,y)=\dfrac{y^3}x

a. The gradient is

\nabla f(x,y)=\dfrac{\partial f}{\partial x}\,\vec\imath+\dfrac{\partial f}{\partial y}\,\vec\jmath

\boxed{\nabla f(x,y)=-\dfrac{y^3}{x^2}\,\vec\imath+\dfrac{3y^2}x\,\vec\jmath}

b. The gradient at point P(1, 2) is

\boxed{\nabla f(1,2)=-8\,\vec\imath+12\,\vec\jmath}

c. The derivative of f at P in the direction of \vec u is

D_{\vec u}f(1,2)=\nabla f(1,2)\cdot\dfrac{\vec u}{\|\vec u\|}

It looks like

\vec u=\dfrac{13}2\,\vec\imath+5\,\vec\jmath

so that

\|\vec u\|=\sqrt{\left(\dfrac{13}2\right)^2+5^2}=\dfrac{\sqrt{269}}2

Then

D_{\vec u}f(1,2)=\dfrac{\left(-8\,\vec\imath+12\,\vec\jmath\right)\cdot\left(\frac{13}2\,\vec\imath+5\,\vec\jmath\right)}{\frac{\sqrt{269}}2}

\boxed{D_{\vec u}f(1,2)=\dfrac{16}{\sqrt{269}}}

7 0
3 years ago
What is 2,400 milliliters converted into liters
BARSIC [14]

Answer:

2.4 liters

Step-by-step explanation:

5 0
4 years ago
Read 2 more answers
Other questions:
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bz%7D%7B3%7D%2B4%3D%20%5Cfrac%7B5%7D%7B6%7D%20" id="TexFormula1" title=" \frac{z}{
    12·2 answers
  • N/3 ≤ 3<br><br> Solve the Inequality and show all work!
    7·1 answer
  • PLEASE SOLVE NOW I WILL MARK BRAINLEST IF SOLVED
    14·1 answer
  • Name the property of 8+3.4=3.4+8
    5·2 answers
  • Simplify the complex fraction 5/6 over 1 and 1/4
    12·2 answers
  • 50 POINTS! SHOW WORK OR ILL REPORT! Multiplying mixed numbers
    15·2 answers
  • If PQRS is a parallelogram, what is the value of y
    14·2 answers
  • Calculate the area of this figure.<br> 11cm<br> 60m<br><br> 14cm
    5·2 answers
  • The graph represents the number of cans produced at a factory with four machines.
    9·1 answer
  • In right triangle ABC, angle C is a righ angle, AB=13, and BC=5 .what is the length of AC?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!