Answer:
37
Step-by-step explanation:
Answer:
R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Step-by-step explanation:
Squaring both sides of equation:
I^2 = (ER)^2/(R^2 + (WL)^2)
<=>(ER)^2 = (I^2)*(R^2 + (WL)^2)
<=>(ER)^2 - (IR)^2 = (IWL)^2
<=> R^2(E^2 - I^2) = (IWL)^2
<=> R^2 = (IWL)^2/(E^2 - I^2)
<=> R = sqrt[(IWL)^2/(E^2 - I^2)] or R = -sqrt[(IWL)^2/(E^2 - I^2)]
Hope this helps!
8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.
The percent of decrease on an item that went from $25 to $20 is 5 percent.
Let w represent the width of the rectangle in cm. Then its length in cm is (3w+9). The perimeter is the sum of two lengths and two widths, so is ...
... 418 = 2(w + (3w+9))
... 209 = 4w +9 . . . . . . divide by 2, collect terms
... 200 = 4w . . . . . . . . subtract 9
... 50 = w . . . . . . . . . . divide by 4
... length = 3w+9 = 3·50 +9 = 159
The dimensions of this piece of land are 159 cm by 50 cm.