Answer:
Step-by-step explanation:
For mixture problems, it is convenient to define a variable to represent the amount of the greatest contributor. Let x represent the amount of 22% solution in the mix. Then 4.8-x is the amount of 10% solution.
The amount of alcohol in the mix is ...
0.22x +0.10(4.8-x) = 0.12(4.8)
Eliminating parentheses, we have ...
0.22x -0.10x +0.10(4.8) = 0.12(4.8)
Subtracting (0.10)(4.8) and combining x-terms gives ...
0.12x = 0.02(4.8)
x = (0.02/0.12)(4.8) = 0.8 . . . . . divide by the x-coefficient
The scientist needs 0.8 L of 22% solution and 4.0 L of 10% solution.
C and D because in that image that is what an proportional relationship looks like so anything that looks like the graph in the photo or c and d is proportional
Answer:
The null and alternative hypotheses are:


Under the null hypothesis, the test statistic is:

Where:
is the sample mean
is the sample standard deviation
is the sample size


Now, we can find the right tailed t critical value at 0.01 significance level for df = n-1 = 10 - 1 = 9 using the t distribution table. The t critical value is given below:
Since the test statistic is less than the t critical value, we therefore, fail to reject the null hypothesis and conclude that there is not sufficient evidence to support the claim that the people do better with the new edition.
-3 because you could eliminate the 3x by subtracting it by 3x
Step-by-step explanation:
I'll do the first problem as an example.
∠P and ∠H both have one mark. That means they're congruent.
∠T and ∠G both have two marks. So they're congruent.
∠W and ∠D both have three marks. So they're congruent.
So we can write a congruence statement:
ΔPTW ≅ ΔHGD
We can write more congruence statements by rearranging the letter, provided that corresponding pairs have the same position (P is in the same place as H, etc.). For example:
ΔWPT ≅ ΔDHG
ΔTWP ≅ ΔGDH