Answer:
-24
Step-by-step explanation:
If you are struggling with this here's a tip!
-18+-6 is what you are trying to solve
The 6 is negative, so get rid of the plus sign -18-6
2 negative numbers are just added like positive numbers
So add 18 and 6, you should get 24
Don't forget about the negative!
-24
Answer:
6c-5d-3
Step-by-step explanation:
6c-7+d+4-6d=6c-5d-3
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)
Answer:
<h3>-<u>Aubrey first applied division of like bases by subtracting the exponents.</u></h3><h3>
-<u>
Next David will apply the quotient of powers.</u></h3><h3><u>
-Aubrey's work is correct .</u></h3><h3><u>
-The correct simplified answer is x^24/64y^15</u></h3>