1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
12

$450 at 5.2% interest for 3 years inerest number: new balance:

Mathematics
1 answer:
timofeeve [1]3 years ago
8 0
1279.8 hope that helped
You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Here 1 more than BIG PRIZE
Firlakuza [10]
Hey there! :D

Use the distributive property.

a(b+c)= ab+ac

6(9x+2)+2x

54x+12+2x

56x+ 12 <== equivalent expression

I hope this helps!
~kaikers
4 0
3 years ago
Please help meeh thank u thank u
Sunny_sXe [5.5K]

Answer:

The location would be between 4 and 5.

Step-by-step explanation:

The square root of 19 would be around 4.3. So you would put a mark between the two lines that are in between the 4 and 5.

5 0
3 years ago
The selling price of an item is $600. After 6 months of not selling, it is marked down by 30% . After another 6 months of not se
Bingel [31]

The sale price after both markdowns will be $336

<em><u>Explanation</u></em>

The selling price of an item is $600. After 6 months of not selling, it is marked down by 30%

So, the marked down amount after 6 months =\$ 600*0.30= \$180

and the selling price after first 6 months will be: \$600-\$180=\$420

After another 6 months of not selling , it is further marked down by 20%. So, the marked down amount now = \$420*0.20=\$84

Thus, the final selling price after all markdowns =\$420-\$84=\$336

4 0
3 years ago
Mrs. Lazo bought 91/8 m of curtain cloth. She used 3 5/6 m to make a
babunello [35]
She did not use 181/24 or 7 13/24 meters of cloth
4 0
3 years ago
Other questions:
  • Help with this please question 3
    9·1 answer
  • If a = 5, b = 5 and c = 10, what is the value of ac / 2b ?
    11·1 answer
  • Your electric bill has been as follows for the past six months:
    11·2 answers
  • What is step two in the problem solving process
    10·1 answer
  • 135 is 30% of what number
    7·1 answer
  • What is 4/7 divided by 2
    11·2 answers
  • How do we evaluate expression
    15·1 answer
  • What is the diameter of this circle?​
    6·1 answer
  • Let k represent the length of a rectangle.
    13·1 answer
  • A sailboat travels at an average speed of 8 km/h. How many kilometers are traveled in 20 h at that speed?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!