Answer:
The equation of the required line is,
<em>y</em> = -2<em>x</em> + 7
Step-by-step explanation:
We know that equation of a line passing through the point (<em>x</em>₁, <em>y</em>₁) and having slope 'm' is given by
(<em>y</em> - <em>y</em>₁) = m(<em>x</em> - <em>x</em>₁)
Now, the required line passes through the point (3, 1) and has a slope of -2.
So, (<em>x</em>₁, <em>y</em>₁) = (3, 1) and m = -2
So, equation of the line passing through (3, 1) and having a slope of -2 is given by,
<em>y</em> - 1 = -2(<em>x</em> - 3)
⇒<em>y</em> - 1 = -2<em>x</em> + 6
⇒<em>y</em> = -2<em>x</em> + 6 + 1
⇒<em>y</em> = -2<em>x</em> + 7
So, the required equation of line in point-slope form is,
<em>y</em> = -2<em>x</em> + 7