Answer: The staircase is 14.28 m high.
Explanation:
Given : Mass = 0.1 kg
Potential energy = 14 J
Potential energy is the energy occupied by the position of a substance. Therefore, formula for potential energy is as follows.
P.E = mgh
where,
m = mass
g = gravitational energy = 
h = height of object
Substitute the values into above formula as follows.

Thus, we can conclude that the staircase is 14.28 m high.
Answer:
The perceived mass of CO2 would not be affected in large quantities because the splash constitutes small particles of water with sodium bicarbonate that is still reacting. The final calculated mass of sodium bicarbonate in the tablet would be artificially low.
Explanation:
Effervescence is a chemical process that involves the reaction of an acid with a carbonate or sodium bicarbonate, releasing carbon dioxide through a liquid. An example is seen in carbonated beverages, in these the gas that escapes from the liquid is carbon dioxide. The bubbles that are seen are produced by the effervescence of the dissolved gas, which by itself is not visible in its dissolved form.
Answer:
c. because it lacks oxygen which might support life of the bacteria
Answer:
The ionic bond in NaCl are stronger than the stronger than the dispersion forces in HCl.
The hydrogen bonds in H2O are stronger than the dispersion forces in H2Se
Hydrogen bonds in NH3 are stronger than the dipole-dipole attractions in PH3.
Hydrogen bonds in HF are stronger than the dispersion forces in F2
Explanation:
Ionic bonds occur in molecules with high differences in their electronegative value where there are actual transfer of electrons. HCl has a bond which is involved in the sharing of electrons.
Hydrogen bonds are present in H2O which is stronger than the dispersion forces.
PH3 is a larger molecule with greater dispersion forces than ammonia, NH3 has very polar N-H bonds leading to strong hydrogen bonding. This dominant intermolecular force results in a greater attraction between NH3 molecules than there is between PH3 molecules.
F2 is a non-polar molecule, therefore they have London dispersion forces between molecules while HF has a hydrogen bond because F is highly electronegative.
Single replacements since cu is being replaced by zn