Answer:
The answer is most likely A. Definite proportions
Explanation:
The Law of Definite proportions states that a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
Answer:
<h3>Theanswer is 6 moles</h3>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>6 moles</h3>
Hope this helps you
Answer:
0.257 L
Explanation:
The values missing in the question has been assumed with common sense so that the concept could be applied
Initial volume of the AICI3 solution
Initial Molarity of the solution
Final molarity of the solution
Final volume of the solution
From Law of Dilution,
Final Volume of the solution 
Mole=number of molecules/6.02x10²³
mole=2
number of molecules= 2x6.02x10²³
number of molecules=12.04x10²³
Answer: Option (3) is the correct answer.
Explanation:
Atomic number of lithium is 3 and its electronic distribution is 2, 1. So, to attain stability it will loose an electron and hence, it forms a single bond.
Atomic number of chlorine is 17 and it has 7 valence electrons. Hence, in order to attain stability it will gain one electron and therefore, it forms a single bond only.
Atomic number of nitrogen is 7 and its electronic distribution is 2, 5. Therefore, to attain stability it needs to gain 3 more electrons. Hence, a nitrogen atom is able to form a triple bond and also it is able to form a double bond.
Hydrogen has atomic number 1 and it attains stability by gaining one electron. Therefore, a hydrogen atoms always forms a single bond.
Atomic number of fluorine is 9 and its electronic distribution is 2, 7. To complete its octet it needs to gain one electron. Hence, a fluorine atom always forms a single bond.
Thus, we can conclude that out of the given options nitrogen is most likely to form multiple (double or triple) bonds.