Sodium Hydroxide (NaOH) is also known as lye which is a base (very high ph; Alkaline)
Now, in chemistry, equilibrium is what affects the reaction rate of a reaction. If they are in equilibrium, the concentrations of them will not change (both reactants and products).
Now, lets say that to synthesize a certain chemical, we need it to be in an acidic environment with HCL or some other acid as the catalyst for the reaction.
Well, if we were to add Sodium Hydroxide to this which is very alkaline, the ph would change greatly which affects the reaction rate. If we do not have enough energy to overcome the activation barrier, the reaction will not occur (atleast for a very long time).
However, a common mistake is thinking that a catalyst will affect the equilibrium. This is not true. The reaction will still take place but it will have a very slow reaction rate.
TLDR; Adding a catalyst (like NaOH or Sodium Hydroxide) will not change the equilibrium but instead change the reaction rate. The reaction can still occur, although it can take a very, very long time (like diamonds turning into graphite)
C. mass is protons and neutrons. Both are in the nucleus
These models are similar because "both the nuclear model and the solar system model have concept of nucleus, electron, positively charged nucleus at center and electrons orbiting around the nucleus".
<u>Explanation:</u>
The points which showcase similarities among both the atomic structure and the composition of the solar system are like the large percentage of the mass centered in the core which is the nucleus or the sun. Attractive forces bring the structure together by application of electromagnetic force or gravitational force.
The existence of the external objects influences the stable state of other surrounding objects as suggested by Pauli theory of exclusion and gravitational disturbance. Overall on the basis of the view only, in both the model their is similarity like atomic model speaks about electrons orbiting the nucleus similar to planets orbiting the sun.
When a substance absorbs thermal energy, it partitions some as potential and some as kinetic energy. Specific heat is an expression related to the quantity of heat a substance stores as potential energy; the remainder is absorbed as kinetic which causes the temperature to increase - recall that temperature is a measure of average kinetic energy.
When specific heat is low, most of the energy is partitioned as kinetic energy and the substance will experience the greatest temperature change.
So rather than calculating the change in temperature, we can simply inspect the specific heats. The one with the lowest will experience the greatest temperature change. We could also compare the specific heats: Al = .897/.385 ==> 2.3, Fe = .452/.385 = 1.2, Cu = .385/.385 = 1. We can expect Copper's temperature change to be 2.3 times larger than Aluminum's and 1.2 times larger than Iron's.