1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
3 years ago
5

Evaluate the expression. −8²=__

Mathematics
1 answer:
Vikentia [17]3 years ago
4 0
It would equal 64 because -8 pounds o the power of 2 would be 64
You might be interested in
Use factor trees to find the GCF of 32, 24, and 40.
Lana71 [14]
GCF           32                    24                      40
                   ^                       ^                        ^
                2   16               2     12               2    20
                      ^                         ^                      ^
                   2    8                   2    6               2    10
                         ^                         ^                       ^
                       2   4                   2   3                 2    5
                            ^
                          2   2

                (2)                         (2 & 3)               (2  &  5)
8 0
3 years ago
ava,jayden,edwina,lexi,luis, and trina are helping clean up a hiking trail during the summer. The trail is 10 miles long. Edwina
viva [34]

Answer:

120 trees

Step-by-step explanation:

4x10=40

40x3=120

120 trees will be planted

3 0
3 years ago
GUYS HELP ITS A TEST AND IMMA FLUNK<br> 10/9 - 7/6=
alexandr402 [8]

Answer:

10/9−7/6= -1/18

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Can someone help me out !<br><br>got stuck in this question for an hour.<br><br><br>​
Reil [10]

Answer:

See below

Step-by-step explanation:

Considering $\vec{u}, \vec{v}, \vec{w} \in V^3 \lambda \in \mathbb{R}$, then

\Vert \vec{u} \cdot \vec{v}\Vert \leq  \Vert\vec{u}\Vert  \Vert\vec{v}\Vert$ we have $(\vec{u} \cdot \vec{v})^2 \leq (\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v}) \quad$

This is the Cauchy–Schwarz  Inequality, therefore

$\left(\sum_{i=1}^{n} u_i v_i \right)^2 \leq \left(\sum_{i=1}^{n} u_i \right)^2 \left(\sum_{i=1}^{n} v_i \right)^2  $

We have the equation

\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b}  = \dfrac{1}{a+b}, a,b\in\mathbb{N}

We can use the Cauchy–Schwarz  Inequality because a and b are greater than 0. In fact, a>0 \wedge b>0 \implies ab>0. Using the Cauchy–Schwarz  Inequality, we have

\dfrac{\sin ^4 x }{a} + \dfrac{\cos^4 x }{b}   =\dfrac{(\sin^2 x)^2}{a}+\dfrac{(\cos^2 x)}{b}\geq \dfrac{(\sin^2 x+\cos^2 x)^2}{a+b} = \dfrac{1}{a+b}

and the equation holds for

\dfrac{\sin^2{x}}{a}=\dfrac{\cos^2{x}}{b}=\dfrac{1}{a+b}

\implies\quad \sin^2 x = \dfrac{a}{a+b} \text{ and }\cos^2 x = \dfrac{b}{a+b}

Therefore, once we can write

\sin^2 x = \dfrac{a}{a+b} \implies \sin^{4n}x = \dfrac{a^{2n}}{(a+b)^{2n}} \implies\dfrac{\sin^{4n}x }{a^{2n-1}} = \dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}

It is the same thing for cosine, thus

\cos^2 x = \dfrac{b}{a+b} \implies \dfrac{\cos^{4n}x }{b^{2n-1}} = \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}}

Once

\dfrac{a^{2n}}{(a+b)^{2n}\cdot a^{2n-1}}+ \dfrac{b^{2n}}{(a+b)^{2n}\cdot b^{2n-1}} =\dfrac{a^{2n}}{(a+b)^{2n} \cdot \dfrac{a^{2n}}{a} } + \dfrac{b^{2n}}{(a+b)^{2n}\cdot \dfrac{b^{2n}}{b} }

=\dfrac{1}{(a+b)^{2n} \cdot \dfrac{1}{a} } + \dfrac{1}{(a+b)^{2n}\cdot \dfrac{1}{b} } = \dfrac{a}{(a+b)^{2n}  } + \dfrac{b}{(a+b)^{2n} } = \dfrac{a+b}{(a+b)^{2n} }

dividing both numerator and denominator by (a+b), we get

\dfrac{a+b}{(a+b)^{2n} } =  \dfrac{1}{(a+b)^{2n-1} }

Therefore, it is proved that

\dfrac{\sin ^{4n} x }{a^{2n-1}} + \dfrac{\cos^{4n} x }{b^{2n-1}}  = \dfrac{1}{(a+b)^{2n-1}}, a,b\in\mathbb{N}

4 0
3 years ago
Find the average rate of change of f ( x ) = 7x^2 − 6 on the interval [ 3 , a ] . Your answer will be an expression involving a
slega [8]

Answer:

\frac{7a^2-63}{a-3}

Step-by-step explanation:

So what is the average rate of change?  Basically, it's the slope.  In fact it's exactly the slope for a linear equation, but how do you find slope?

\frac{y_2-y_1}{x_2-x_1}

Sp we just plug the values in.  

x_1=3\\x_2=a\\y_1=7(3)^2-6=63-6=57\\y_2=7(a)^2-6

\frac{7a^2-6-57}{a-3}=\frac{7a^2-63}{a-3}

3 0
3 years ago
Other questions:
  • The length of a small rectangular room is 4 units more than the width, and the area of the room is 32 square units. What are the
    11·1 answer
  • A. The perimeter of a rectangle is twice the length plus twice the width. If L represents the length and W represents the​ width
    6·1 answer
  • Just part c please thanks
    15·1 answer
  • 25x^2+1=5 quadratic
    12·1 answer
  • A vase can hold 9 flowers. If a florist had 878 flowers she wanted to put equally into vases, how many flowers would be in the l
    9·2 answers
  • Which phrase describes the algebraic expression B2+7?
    11·1 answer
  • Chicago Avenue is parallel to Ontario Street what is the relationship between angles five and seven?
    14·1 answer
  • Whats the gcf of 60 and 70??
    5·2 answers
  • Can you help me with these questions pls
    14·1 answer
  • The function f(x) = –x2 – 4x + 5 is shown on the graph. On a coordinate plane, a parabola opens down. It goes through (negative
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!