Answer:
x=-8
Step-by-step explanation:
collect like terms
-5x=40
divide both sides of the equation by -5
so the answer would be x=-8
Answer:
The answer is (C.
Step-by-step explanation:
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>
the construction of fields of formal infinite series in several variables, generalizing the classical notion of formal Laurent series in one variable. Our discussion addresses the field operations for these series (addition, multiplication, and division), the composition, and includes an implicit function theorem.
(PDF) Formal Laurent series in several variables. Available from: https://www.researchgate.net/publication/259130653_Formal_Laurent_series_in_several_variables [accessed Oct 08 2018].