Answer:B-t=37705-20h
Step-by-step explanation:The answer is B because you need to get rid of all  of the money she made working so you subtract 20 by how ever many hours she has worked
 
        
                    
             
        
        
        
25%. 60 divided by 15 is 4, thus 15 is 1/4 of 60. 1/4 can also be expressed as 25%
        
                    
             
        
        
        
F = 2t - 3
f = 2(7) - 3
f = 14 - 3
f = 11
        
             
        
        
        
The answer is 2/3 I hope it helped
        
             
        
        
        
Answer:
The value of AB is ![\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D) and it's not possible to multiply BA.
 and it's not possible to multiply BA.
Step-by-step explanation:
Consider the provided matrices.
![A=\left[\begin{array}{ccc}2&3\\2&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C2%261%5Cend%7Barray%7D%5Cright%5D) ,
, ![B=\left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Two matrices can be multiplied if and only if first matrix has an order m × n and second matrix has an order n × v.
Multiply AB 
Matrix A has order 2 × 2  and matrix B has order 2 × 1. So according to rule we can multiply both the matrix as shown:
![AB=\left[\begin{array}{ccc}2&3\\2&1\end{array}\right] \left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C2%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}2\times 3+3\times 5\\2\times 3+1\times 5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5Ctimes%203%2B3%5Ctimes%205%5C%5C2%5Ctimes%203%2B1%5Ctimes%205%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}6+15\\6+5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%2B15%5C%5C6%2B5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Hence, the value of AB is ![\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Now calculate the value of BA as shown:
Multiply BA 
Matrix B has order 2 × 1  and matrix A has order 2 × 2. So according to rule we cannot multiply both the matrix.
We can multiply two matrix if first matrix has an order m × n and second matrix has an order n × v.
That means number of column of first matrix should be equal to the number of rows of second matrix.
Hence, it's not possible to multiply BA.