Answer:
Area = 152ft²
Step-by-step explanation:
Simpifly:
A = 13(13-6) + 9(13-6)
A = 13(7) + 9(7)
A = 22(7)
A = 22(7)
A = 20(7)+2(7)
A = 140 + 14
A = 152
Answer:
Part B shaded below first line and above second line.
Step-by-step explanation:
The first inequality corresponds to the second line (-3 = -4+1, for example) The ≥ symbol in that inequality tells you it will be satisfied by y values above those on the line.
The second inequality corresponds to the first line (-4+3 = -1, for example) The ≤ symbol in that inequality tells you it will be satisfied by y values below those on the line.
Hence the solution set is those values shaded below the first line and above the second line — matching Part B.
Answer:

Step-by-step explanation:
Let us solve

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>Please</em><em> </em><em>let</em><em> </em><em>me</em><em> </em><em>know</em><em> </em><em>if</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>another</em><em> </em><em>questions</em><em> </em><em>:-)</em>
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 