SA = 2lw + 2lh + 2hw
SA = 2(15)(2) + 2(15)(6) + 2(6)(2)
SA = 60 + 180 + 24
SA = 264
Answer: If the measures of the corresponding sides of two triangles are proportional then the triangles are similar. Likewise if the measures of two sides in one triangle are proportional to the corresponding sides in another triangle and the including angles are congruent then the triangles are similar.
Step-by-step explanation:
Answer:
34.134%
68.268%
Step-by-step explanation:
Given that:
Mean (m) = 500
Standard deviation (s) = 100
Percentage between 500 and 600
P(500 < x < 600)
P(x < 600) - P(x < 500)
Z = (x - m) / s
P(x < 600)
Z = (600 - 500) /100 = 1
P(x < 500)
Z = (500 - 500) / 500 = 0
P(Z< 1) - P(Z < 0)
0.84134 - 0.5
= 0.34134
= 0.34134 * 100%
= 34.134%
B.) Between 400 and 600
P(x < 400)
Z = (400 - 500) /100 = - 1
P(x < 600)
Z = (600 - 500) / 500 = 1
P(Z< 1 ) - P(Z < - 1)
0.84134 - 0.15866
= 0.68268
= 0.68268 * 100%
= 68.268%
Answer:
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151
Step-by-step explanation:
<u><em>Step(i):-</em></u>
<em>Given mean of the population = 500 </em>
<em>Given standard deviation of the Population = 75</em>
Let 'X' be the variable in normal distribution

<em>Given X = $410</em>
<em></em>
<em></em>
<u><em>Step(ii):-</em></u>
The probability that a family spends less than $410 per month
P( X < 410) = P( Z < - 1.2 )
= 0.5 - A( -1.2)
= 0.5 - A(1.2)
= 0.5 - 0.3849 ( ∵from normal table)
= 0.1151
<u>Final answer:-</u>
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151