A rectangle is a two-dimensional shape with two sets of equal, parallel sides. These dimensions are the length (L) and the width (W). The formula for the rectangle's area is the product of the two dimensions. The formula for perimeter is
P = 2L + 2W
Since
A = LW = 64
W = 64/L
Substituting to the formula for perimeter would be,
P = 2L + 2(64/L)
P = 2L + 128/L
Answer:
a) ![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) ![P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c) n=62
d) n=138
Step-by-step explanation:
Note: "Each chip contains n transistors"
a) A chip needs all n transistor working to function correctly. If p is the probability that a transistor is working ok, then:
![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) The memory module works with when even one of the chips is defective. It means it works either if 8 chips or 9 chips are ok. The probability of the chips failing is independent of each other.
We can calculate this as a binomial distribution problem, with n=9 and k≥8:
![P[M]=P[C_9]+P[C_8]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)\\\\P[M]=p^{8n}(p^{n}+9(1-p^n))\\\\P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%28p%5E%7Bn%7D%2B9%281-p%5En%29%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c)
![P[M]=(0.999)^{8n}(9-8(0.999)^n)=0.9](https://tex.z-dn.net/?f=P%5BM%5D%3D%280.999%29%5E%7B8n%7D%289-8%280.999%29%5En%29%3D0.9)
This equation was solved graphically and the result is that the maximum number of chips to have a reliability of the memory module equal or bigger than 0.9 is 62 transistors per chip. See picture attached.
d) If the memoty module tolerates 2 defective chips:
![P[M]=P[C_9]+P[C_8]+P[C_7]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1+\binom{9}{7}P[C]^7(1-P[C])^2\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])+36P[C]^7(1-P[C])^2\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)+36p^{7n}(1-p^n)^2](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%2BP%5BC_7%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%2B%5Cbinom%7B9%7D%7B7%7DP%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%2B36P%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%2B36p%5E%7B7n%7D%281-p%5En%29%5E2)
We again calculate numerically and graphically and determine that the maximum number of transistor per chip in this conditions is n=138. See graph attached.
Answer:
a.
The French government gathers €85,930,190,677 more than the German government
Step-by-step explanation:
Answer:
y=
x-2
Step-by-step explanation:
Slope intercept form is a way to describe a function using its slope and y-intercept and is written as y=mx+b.
m=slope
b=y-intercept
Looking at the graph we can see it goes through x=0 at y=-2 making -2 the y-intercept.
Then we must solve for slope, slope is rise/run. From the point (0,-2) the function travels to (7,0).
This gives us a rise (change in x) of 2 and a run (change in y) of 7 and 2/7 as our slope.
Let g represent video games. The equation you can use to solve for the amount of video games and CDs Jasmine can buy with her savings is:
43g+72=1128
The 43g part is because it costs 43 dollars for every video game, so you need to multiply 43 by the amount of games she buys to get the total for g games.
The +72 part is because you already have the amount spent on CDs, and needs to be added to the cost of video games, so that the sum would be equal to 1128.
Now, solving:
43g+72=1128 ...subtract 72 from both sides
43g=1056 ...divide both sides by 43 to isolate g
g=24.5581395349
Rounded up, that would be 25 games, but Jasmine's savings isn't enough to buy 25 games that cost $43 each, so you would go down to 24 games.
The answer: Jasmine can buy 24 games with her savings after spending $72 on CDs.