Answer:
s = height above ground
s = 60 + 20 t - 4.9 t^2 (standard physics equation on earth)
at t = 0
s = 60 (clearly :)
now when does it hit the bleak earth?
That is when s = 0
4.9 t^2 - 20 t -60 = 0
solve quadratic and use the positive t (the negative t was back before you threw it if you had thrown it from the ground)
t = 6.09 or - 2.01
use t = 6.09
now to do the last part there are two obvious ways to get t at the peak
1. look for vertex of parabola
2. look for halfway between t = -2.01 and t = 6.09
I will do it the hard (11) waay by completing the square
4.9 t^2 - 20 t = -(s-60)
t^2 - 4.08 t = -.204 s + 12.2
t^2 - 4.08 t +2.04^2 = -.204 s +12.2 + 4.16
(t-2.04)^2 = -.204(s-80.2)
so
top at 80.2 meters at t = 2.04 s
===============
quick check on time
should be average of 6.09 and -2.01
=4.08 /2 = 2.04 check
Let x be the resistance of the wire with the larger diameter.
x = (0.456 x (0.01)^2)/(0.0401)^2 = 0.0284 ohms
The answer is 0.0284 ohms.
Answer:
here
Step-by-step explanation:
I uh hope this helps...
0, 1/3, 2/3, 1, 1 1/3, 1 2/3, 2
The given pyramid's total surface area is 3. 24.0 square feet.
Step-by-step explanation:
Step 1:
To calculate the surface area of the given figure, we need to find the surface areas of the different shapes in the figure.
There are 3 triangles and 1 square in the figure.
Step 2:
All the triangles are similar.
The surface area of a triangle = 
The similar triangles have a base length of 3 feet and a height of 2.5 feet.
The surface area of 1 similar triangle =
square feet.
The surface area for all the similar triangles =
square feet.
Step 3:
The surface area of a square is the square of its side length. The square has a side length of 3 feet.
The surface area of the square =
square feet.
Step 4:
To calculate the total surface area we sum up all the individual surface area.
The total surface area =
square feet which is the third option.